scholarly journals Naturally Occurring Diarylheptanoids

2010 ◽  
Vol 5 (10) ◽  
pp. 1934578X1000501 ◽  
Author(s):  
Haining Lv ◽  
Gaimei She

Diarylheptanoids, natural products with a 1,7-diphenylheptane structural skeleton, are mainly distributed in the roots, rhizomes and bark of Alpinia, Zingiber, Curcuma and Alnus species. They have become of interest in natural product research over the past twenty years because of their remarkable anticancer, anti-emetic, estrogenic, antimicrobial and antioxidant activity. This paper compiles all 307 naturally occurring diarylheptanoids from 46 plants as reported in 137 references with their distributions, physiological activities and 13C-NMR spectral data.

Author(s):  
Min Chen ◽  
Xueyang Ren ◽  
Siqi Sun ◽  
Xiuhuan Wang ◽  
Xiao Xu ◽  
...  

Background: Flavonoid glucuronides are a kind of natural products which present a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and anti-bacteria activities. In particular, the compound breviscapine has a notable effect on cardio-cerebrovascular diseases. Several other compounds even have antitumor activity. Methods: Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. Results: We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc. Conclusion : Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. And they are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides’ biological activities and mechanisms.


2014 ◽  
Vol 18 (03) ◽  
pp. 188-199 ◽  
Author(s):  
Áron Roxin ◽  
Thomas D. MacDonald ◽  
Gang Zheng

Here we show the facile synthesis of 132-173-bacteriochlorophyllone a (12), with a distinct seven-membered exocyclic F-ring formed by 132-173-cyclization of bacteriopheophorbide a(16). This is the latest reported bacteriochlorin with such an exocyclic F-ring since 1975 (132-173 cyclobacteriopheophorbide a-enol, 11), and is an analog of previously described natural exocyclic F-ring-containing porphyrins (1–4) and chlorins (5–10). The structure of 12 was confirmed using a combination of 1D 1 H NMR, 2D COSY 1 H NMR, Jmod 13 C NMR and HRMS analysis. The biological activity of 12 was explored, and we found that this compound does not possess strong antioxidant activity like its natural product counterparts, but is a capable photosensitizer for photodynamic therapy.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 669 ◽  
Author(s):  
Anastasia Detsi ◽  
Eleni Kavetsou ◽  
Ioanna Kostopoulou ◽  
Ioanna Pitterou ◽  
Antonella Rozaria Nefeli Pontillo ◽  
...  

Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers’ formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.


2020 ◽  
Vol 177 (10) ◽  
pp. 2169-2178 ◽  
Author(s):  
Angelo A. Izzo ◽  
Mauro Teixeira ◽  
Steve P.H. Alexander ◽  
Giuseppe Cirino ◽  
James R. Docherty ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (101) ◽  
pp. 57350-57376 ◽  
Author(s):  
Lishu Wang ◽  
Xuefeng Zhou ◽  
Mangaladoss Fredimoses ◽  
Shengrong Liao ◽  
Yonghong Liu

This review, with 290 references, presents the fascinating area of iodinated natural products over the past hundred years for the first time.


2014 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Geoffrey A. Cordell

“Why didn’t they develop natural product drugs in a sustainable manner at the beginning of this century?”  In 2035, when about 10.0 billion will inhabit Earth, will this be our legacy as the world contemplates the costs and availability of synthetic and gene-based products for primary health care?  Acknowledging the recent history of the relationship between humankind and the Earth, it is essential that the health care issues being left for our descendants be considered in terms of resources. For most people in the world, there are two vast health care “gaps”, access to quality drugs and the development of drugs for major global and local diseases.  Consequently for all of these people, plants, in their various forms, remain a primary source of health care.  In the developed countries, natural products derived from plants assume a relatively minor role in health care, as prescription and over-the-counter products, even with the widespread use of phytotherapeutical preparations.  Significantly, pharmaceutical companies have retrenched substantially in their disease areas of focus.  These research areas do not include the prevalent diseases of the middle- and lower-income countries, and important diseases of the developed world, such as drug resistance. What then is the vision for natural product research to maintain the choices of drug discovery and pharmaceutical development for future generations?  In this discussion some facets of how natural products must be involved globally, in a sustainable manner, for improving health care will be examined within the framework of the new term “ecopharmacognosy”, which invokes sustainability as the basis for research on biologically active natural products.  Access to the biome, the acquisition, analysis and dissemination of plant knowledge, natural product structure diversification, biotechnology development, strategies for natural product drug discovery, and aspects of multitarget therapy and synergy research will be discussed.  Options for the future will be presented which may be significant as countries decide how to develop approaches to relieve their own disease burden, and the needs of their population for improved access to medicinal agents.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258934
Author(s):  
Nico Ortlieb ◽  
Elke Klenk ◽  
Andreas Kulik ◽  
Timo Horst Johannes Niedermeyer

Natural products are an important source of lead compounds for the development of drug substances. Actinomycetes have been valuable especially for the discovery of antibiotics. Increasing occurrence of antibiotic resistance among bacterial pathogens has revived the interest in actinomycete natural product research. Actinobacteria produce a different set of natural products when cultivated on solid growth media compared with submersed culture. Bioactivity assays involving solid media (e.g. agar-plug assays) require manual manipulation of the strains and agar plugs. This is less convenient for the screening of larger strain collections of several hundred or thousand strains. Thus, the aim of this study was to develop a 96-well microplate-based system suitable for the screening of actinomycete strain collections in agar-plug assays. We developed a medium-throughput cultivation and agar-plug assay workflow that allows the convenient inoculation of solid agar plugs with actinomycete spore suspensions from a strain collection, and the transfer of the agar plugs to petri dishes to conduct agar-plug bioactivity assays. The development steps as well as the challenges that were overcome during the development (e.g. system sterility, handling of the agar plugs) are described. We present the results from one exemplary screening campaign targeted to identify compounds inhibiting Agr-based quorum sensing where the workflow was used successfully. We present a novel and convenient workflow to combine agar diffusion assays with microtiter-plate-based cultivation systems in which strains can grow on a solid surface. This workflow facilitates and speeds up the initial medium throughput screening of natural product-producing actinomycete strain collections against monitor strains in agar-plug assays.


2021 ◽  
Author(s):  
Nadya Abbood ◽  
Tien Duy Vo ◽  
Jonas Watzel ◽  
Kenan A. J. Bozhueyuek ◽  
Helge B. Bode

Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatised as inefficient, time-, labour-, and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new-to-nature natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programms. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPS in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mgL-1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly.


2020 ◽  
Vol 23 (9) ◽  
pp. 862-876
Author(s):  
Hayrettin O. Gulcan ◽  
Ilkay E. Orhan

With respect to the unknowns of pathophysiology of Alzheimer’s Disease (AD)-, and Parkinson’s Disease (PD)-like neurodegenerative disorders, natural product research is still one of the valid tools in order to provide alternative and/or better treatment options. At one hand, various extracts of herbals provide a combination of actions targeting multiple receptors, on the other hand, the discovery of active natural products (i.e., secondary metabolites) generally offers alternative chemical structures either ready to be employed in clinical studies or available to be utilized as important scaffolds for the design of novel agents. Regarding the importance of certain enzymes (e.g. cholinesterase and monoamine oxidase B), for the treatment of AD and PD, we have surveyed the natural product research within this area in the last decade. Particularly novel natural agents discovered within this period, concomitant to novel biological activities displayed for known natural products, are harmonized within the present study.


Sign in / Sign up

Export Citation Format

Share Document