scholarly journals Chemical Composition and Antimicrobial Activities of the Essential Oils from Ocimum Selloi and Hesperozygis myrtoides

2011 ◽  
Vol 6 (7) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Márcia G. Martini ◽  
Humberto R. Bizzo ◽  
Davyson de L. Moreira ◽  
Paulo M. Neufeld ◽  
Simone N. Miranda ◽  
...  

Ocimum selloi, a traditional medicinal plant from Brazil, is sold in open-air markets at Rio de Janeiro State. Hesperozygis myrtoides is a very aromatic small bush found in the State of Minas Gerais, Brazil, growing at an altitude of 1800m. The chemical composition of both essential oils was analyzed as well as their antimicrobial activity against fungi and bacteria. For all specimens of Ocimum selloi obtained at open-air markets, methylchavicol was major compound found (93.6% to 97.6%) in their essential oils. The major compounds identified in the oil of H. myrtoides were pulegone (44.4%), isomenthone (32.7%), and limonene (3.5%). Both oils displayed antimicrobial activity against all tested microorganisms but Candida albicans was the most susceptible one. Combinations of the two oils in different proportions were tested to verify their antimicrobial effect against C. albicans, which, however, was not modified in any of the concentrations tested. The minimum inhibitory concentration (MIC) was determined to confirm the antimicrobial activity against C. albicans as well as other clinical isolates ( C. glabrata, C. krusei, C. parapsilosis and C. tropicalis).

2014 ◽  
Vol 9 (9) ◽  
pp. 1934578X1400900
Author(s):  
Camila Hernandes ◽  
Silvia H. Taleb-Contini ◽  
Ana Carolina D. Bartolomeu ◽  
Bianca W. Bertoni ◽  
Suzelei C. França ◽  
...  

Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.


2008 ◽  
Vol 25 (No. 2) ◽  
pp. 81-89 ◽  
Author(s):  
A. Adiguzel ◽  
H. Ozer ◽  
H. Kilic ◽  
B. Cetin

The present work reports the <i>in vitro</i> antimicrobial activities of the essential oil and methanol extract from <i>Satureja hortensis</i> as well as the content of its essential oil. The chemical composition of hydrodistilled essential oil of Satureja hortensis was analysed by means of GC-MS. Thirty constituents were identified. The main constituents of the oil were thymol (40.54%), &gamma;-terpinene (18.56%), carvacrol (13.98%), and <i>p</i>-cymene (8.97). The essential oil of <i>Satureja hortensis</i> exhibited the activity against 25 bacteria, 8 fungi, and a yeast, <i>C. albicans</i>; exerting the Minimum Inhibitory Concentration values (MIC) ranging from 15.62 to 250 &micro;l/ml. Similarly, methanol extract of the plant also showed antimicrobial activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


2019 ◽  
Vol 7 (2) ◽  
pp. 60-67
Author(s):  
Razieh Partovi ◽  
Fazele Talebi ◽  
Zahra Boluki ◽  
Aghil Sharifzadeh

Background: Food spoilage and foodborne diseases are two important problems in the food industry. On the other hand, consumers’ tendency to use natural additives is increasing. Hence, plant essential oils (EOs) can be safe alternatives in this regard. Objective: The objectives were to determine the chemical composition and to evaluate the antimicrobial activity of Cymbopogon citratus EO against some foodborne bacteria alone and in combination with Origanum majorana and Caryophyllus aromaticus EOs. Materials and Methods: Chemical composition of C. citratus EO was analyzed by gas chromatography-mass spectrometry. Further, antibacterial activity of the EO against foodborne bacteria was assessed using disk diffusion method. In addition, the minimum inhibitory concentration of the EO was determined by microdilution broth method and then the minimum bactericidal concentration value was determined. Checkerboard synergy testing was also performed to determine the fractional inhibitory concentration index. Finally, time-kill curves were drawn based on the bacterial population (CFU/mL) against time (h). Results: The major compounds of C. citratus EO were isothymol, thymol, trans-caryophyllene, and cymene. The most and the least sensitive foodborne bacteria to C. citratus EO were Staphylococcus aureus and Bacillus subtilis, respectively. The minimum inhibitory concentration (MIC) values of C. citratus EO against all the evaluated bacteria were 0.1% and The minimum bactericidal concentration (MBC) values ranged between 0.1 and >2% (v/v). The combination of C. citratus and O. majorana EOs showed a synergistic activity against Salmonella typhimurium and partial synergism against B. subtilis, Escherichia coli O157:H7, S. aureus, and Listeria monocytogenes. Moreover, the combination of C. citratus and C. aromaticus EOs demonstrated partial synergism against S. aureus and L. monocytogenes, and additive interaction against S. typhimurium; however, the combination was indifferent against E. coli O157:H7 and B. subtilis. Furthermore, C. citratus plus O. majorana EOs and C. citratus plus C. aromaticus EOs showed a bactericidal effect against S. typhimurium after 24 hours in the time-kill assay. Conclusion: In general, the synergism, partial synergism, and additive effects of C. citratus in combination with C. aromaticus and O. majorana EOs strengthen the antimicrobial activity, expand the spectrum of activity, reduce the concentrations required, decrease the side effects, and prevent the alteration of organoleptic properties of food.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


2020 ◽  
Vol 36 (2) ◽  
Author(s):  
Ana Flávia da Silva ◽  
Marisa de Oliveira Lopes ◽  
Cláudio Daniel Cerdeira ◽  
Ingridy Simone Ribeiro ◽  
Isael Aparecido Rosa ◽  
...  

The radish (Raphanus sativus L.) is a vegetable of the Brassicaceae family cultivated worldwide and has several medicinal properties. Its biological activities are related to various secondary metabolites present in the species, especially phenolics. Thus, the objectives of this study were the chemical analysis and evaluation of the antioxidant and antimicrobial activities of the dry extract and fractions of the fodder turnip leaves (R. sativus var. oleiferus Metzg.). Samples were analyzed by mass spectrometry and the antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and the reducing power method. Antimicrobial activity was determined by the agar diffusion and microdilution methods. The total phenols were concentrated in the butanol fraction (121.27 mg GAE/g) and the flavonoids were concentrated in the ethyl acetate fraction (98.02 mg EQ/g). The ethyl acetate fraction showed the best antioxidants results, with 83.45% of free radical scavenging and 11.34% of ferric ions reduction. The analysis of antimicrobial activity showed that the dry extract had the highest average zone of inhibition against Bacillus subtilis (18.67 mm). Smaller values of the minimum inhibitory concentration for Micrococcus luteus were, and the ethyl acetate fraction showed a lower minimum inhibitory concentration (0.1 mg/ml) for that microorganism. There was a strong correlation between the antioxidant activity and the content of phenols and flavonoids. The results showed the potential antioxidant and antimicrobial activities of this extract with the ethyl acetate fraction being most promising for further studies.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 453 ◽  
Author(s):  
Nhan Trong Le ◽  
Duc Viet Ho ◽  
Tuan Quoc Doan ◽  
Anh Tuan Le ◽  
Ain Raal ◽  
...  

The present study aimed to determine the antimicrobial activity and chemical composition of leaves-extracted essential oil of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le (L. domatiophorus), including antibacterial, antimycotic, antitrichomonas and antiviral effects. The essential oil was obtained using hydrodistillation, with an average yield of 0.34 ± 0.01% (v/w, dry leaves). There were 52 constituents as identified by GC/MS with available authentic standards, representing 96.74% of the entire leaves oil. The essential oil was comprised of three main components, namely viridiflorene (16.47%), (-)-δ-cadinene (15.58%) and γ-muurolene (8.00%). The oil showed good antimicrobial activities against several species: Gram-positive strains: Staphylococcus aureus (two strains) and Enterococcus faecalis, with Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC) values from 0.25 to 1% (v/v); Gram-negative strains such as Escherichia coli (two strains), Pseudomonas aeruginosa (two strains) and Klebsiella pneumoniae, with MIC and MLC values between 2% and 8% (v/v); and finally Candida species, having MIC and MLC between 0.12 and 4% (v/v).Antitrichomonas activity of the oil was also undertaken, showing IC50, IC90 and MLC values of 0.008%, 0.016% and 0.03% (v/v), respectively, after 48h of incubation. The essential oil resultedin being completely ineffective against tested viruses, ssRNA+ (HIV-1, YFV, BVDV, Sb-1, CV-B4), ssRNA- (hRSVA2, VSV), dsRNA (Reo-1), and dsDNA (HSV-1, VV) viruses with EC50 values over 100 µg/mL. This is the first, yet comprehensive, scientific report about the chemical composition and pharmacological properties of the essential oil in L. domatiophorus.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Carolina Oliveira Silva ◽  
Elidiane Fonseca Santana ◽  
Antonio Marcos Saraiva ◽  
Felipe Neves Coutinho ◽  
Ricardo Henrique Acre Castro ◽  
...  

The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts wasStaphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the threeCandidastrains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities.


2020 ◽  
Vol 15 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Jalil Kardan-Yamchi ◽  
Mohaddese Mahboubi ◽  
Hossein Kazemian ◽  
Gholamreza Hamzelou ◽  
Mohammad M. Feizabadi

Background: Microbial resistance to antibiotics and their adverse effects related to these antibiotics are a matter of global public health in the 21th century. The emergence of drug-resistant strains, has gained the interest of the scientists to discover new antimicrobial agents from the essential oil of medicinal plants. Methods: Anti-mycobacterial effects of Trachyspermum copticum and Pelargonium graveolens essential oils were determined against multi-drug resistant clinical strains of Mycobacterium tuberculosis, Mycobacterium kansasii, Mycobacterium fortuitum and standard strain of Mycobacterium tuberculosis H37Rv by a Broth micro-dilution method. Pelargonium graveolens plant named Narmada was discovered by Kulkarni R.N et al. (Patent ID, USPP12425P2) and a formulation comprising thymol obtained from Trachyspermum is useful in the treatment of drug-resistant bacterial infections (Patent ID, US6824795B2). The chemical composition of hydro-distilled essential oils was determined by GC and GC-MS. Results: Minimum Inhibitory Concentration (MIC) values for T. copticum essential oil against tested isolates were ranged from 19.5 µg/mL to 78 µg/mL. The least minimum inhibitory concentration of P. graveolens extract against M. Kansasii and MDR-TB was 78 µg/ml. Conclusion: The results of the present research introduced T. copticum and P. graveolens essential oils as a remarkable natural anti-mycobacterial agent, but more pharmacological studies are required to evaluate their efficacy in animal models.


2017 ◽  
Vol 1 ◽  
pp. 01
Author(s):  
G. Bachir Raho ◽  
M. Otsmane ◽  
F. Sebaa

Juniperus phoenicea (Family: Cupressaceae) is an evergreen tree widely distributed in North Africa including Algeria. The aim of this investigation was to analyse the antimicrobial potential of essential oils from J. phoenicea on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Streptococcus sp, Bacillus sp and Candida albicans using wells and discs diffusion methods. Broth dilution method was utilized to study the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). The results showed a variable degree of antimicrobial activity. The diameters of inhibition zones for all test organisms were in the ranges of 7–21 mm, while MIC was from 62.5 to >500µl/ml and MBC from 250 to >500µl/ml. The highest antimicrobial activities were observed against Gram positive bacteria followed by Gram negative ones then Candida albicans. The findings provide the evidence that J. phoenicea as a good medicinal plant for further investigations. 


Sign in / Sign up

Export Citation Format

Share Document