scholarly journals Antitumor Screening of Pterodon pubescens Terpenic Fraction Indicates High Sensitivity for Lymphocytic Leukemia Cells

2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901
Author(s):  
Thiago Martino ◽  
Monica F. Pereira ◽  
Carlos R.M. Gayer ◽  
Sergio R. Dalmau ◽  
Marsen G.P. Coelho ◽  
...  

Cancer is the second leading cause of human mortality worldwide. Therefore, the search for new drugs or alternative therapy strategies has been required. Anticancer agents have been developed from plants since the 1950s and natural products still represent an important source of new and promising bioactive molecules. This work describes the cytotoxic effects of SF5 on tumor cells of high prevalence in the world and investigated some mechanisms of its antitumor action. The antitumor screening was performed with human lung carcinoma (A549), human breast (MCF-7) and prostate (PC-3) adenocarcinoma and chronic myeloid and acute lymphocytic leukemia cell lines. The acute lymphocytic leukemia Jurkat cells presented high sensitivity to the cytotoxic effects of SF5 (inhibition of 85–90%), compared with either the chronic myeloid leukemia K562 or solid tumor cell lines (lung, breast and prostate). SF5 arrested the cell cycle in G1 phase, which may be related with the observed downregulation of mRNA expression of c-Myc transcription factor at 24 h and 36 h. SF5 treatment induced cytochrome c release from mitochondria to cytosol, leading the Jurkat cells into apoptosis, which was evidenced by the internucleosomal fragmented DNA and increased number of annexin V-FITC positive cells. The SF5 showed high cytotoxicity for lymphocytic leukemia cells and low or none for solid tumor cells, without toxicity for peripheral mononuclear cells of healthy humans. SF5 altered gene expression, arrested the cell cycle and induced apoptosis via the mitochondrial pathway, similar to traditional antineoplastic chemotherapeutic drugs.

Leukemia ◽  
1999 ◽  
Vol 13 (2) ◽  
pp. 241-249 ◽  
Author(s):  
PJ van Horssen ◽  
YVJM van Oosterhout ◽  
S Evers ◽  
HHJ Backus ◽  
MGCT van Oijen ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3096-3096 ◽  
Author(s):  
Harald Ehrhardt ◽  
Ines Höfig ◽  
Irmela Jeremias

Abstract Abstract 3096 Poster Board III-33 Introduction Betulinic acid (BA) represents an effective inducer of apoptosis in a broad spectrum of solid tumor cells in vitro and in small animal models in vivo. Due to its low toxicity in animal trials, it represents a putative future anti-cancer drug. We first described that in addition to solid tumor cells, BA potently induces apoptosis in leukemia cells expanding the therapeutic use of BA to hematological malignancies (Ehrhardt et al., Leukemia 2004). Purpose Here we asked how BA might best be incorporated into polychemotherapy protocols used to treat acute leukemia and therefore searched for conventional cytotoxic drugs which enhance the anti-tumor effect of BA. Of suitable drugs discovered, we characterized the molecular mechanisms determining the synergistic interaction with BA. Methods We used both leukemia cell lines and primary tumor cells obtained from children with acute lymphoblastic or myeloid leukemia at diagnosis of disease or relapse. Primary, patient-derived tumor cells were further amplified in NOD/SCID mice. Most importantly, we transfected primary, patient-derived tumor cells to knock down endogenous apoptosis signaling proteins. Results – phenotype When conventional cytotoxic drugs in routine use to treat acute leukemia were screened on leukemic cell lines, three drugs were identified which induce synergistic induction when given together with BA: doxorubicin, asparaginase and vincristine. Accordingly, clonogenic survival was reduced in a super-additive way, when one of these drugs was combined with BA. Importantly, synergistic apoptosis induction by these drugs with BA was also found in primary, patient-derived leukemic tumor samples. Both in primary samples and cell lines, BA-induced apoptosis was enhanced by addition of the second drug, even if doxorubicin, asparaginase or vincristine alone were unable to induce apoptosis due to apoptosis resistance. Results – mechanism Synergistic apoptosis induction was accompanied by increased caspase activation and was inhibited by the addition of zVAD, by overexpression of XIAP or knockdown of Caspase-9. p53 was activated nearly exclusively, when doxorubicin, asparaginase or vincristine was combined with BA and knockdown of p53 inhibited synergistic apoptosis induction of the drug combinations. While expression of Bak, Bim, Bid, Bcl-2, Bcl-xL and PUMA remained unchanged by stimulation with BA and doxorubicin, asparaginase or vincristine, the p53 target gene NOXA was strongly upregulated exclusively when drugs were combined. When doxorubicin, asparaginase or vincristine were given together with BA, more apoptogenic factors like Smac and Cytochrome c were released from mitochondria and synergistic apoptosis induction by BA with either doxorubicin, asparaginase or vincristine depended on increased mitochondrial signaling. Knockdown of Bim, Bid or PUMA did not alter synergistic apoptosis induction by BA and doxorubicin, asparaginase or vincristine. In contrast, overexpression of Bcl-2 or Bcl-xL or knockdown of either Bak or NOXA inhibited synergistic apoptosis induction. Knockdown of p53 and NOXA in primary, patient-derived leukemia cells completely inhibited synergistic apoptosis induction by BA and doxorubicin, asparaginase or vincristine. Conclusion Our data show that BA induces synergistic apoptosis induction when given in combination with doxorubicin, asparaginase and vincristine based on increased activation of p53 which enables expression of NOXA and a NOXA – Bak dependent activation of mitochondria. BA should best be incorporated into future anti-leukemia polychemotherapy protocols in close proximity to doxorubicin, asparaginase or vincristine. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Yifan Zeng ◽  
Xing-Hua Liang ◽  
Yong Xia ◽  
Wen-Yin He

Abstract Objective To explore the mechanism of JQ1 on leukemia cells. Methods This study takes two myeloid leukemia cell lines as a research model. Cells treated with high concentration of JQ1 were collected for quantitative real-time PCR, immunoblot and flow cytometry to verify the effects of JQ1 on myeloid leukemia tumor cells. Combined with mRNA sequencing of cell lines to identify the differences in mRNA expression of different cell lines. Results Two cell lines changed cell morphology under JQ1 treatment. The cell membrane appeared in varying degrees of wrinkled internal subsidence. K562 cell lines can maintain stable proliferation after being induced by a specific concentration of JQ1. However, JQ1 cannot induce the death of the K562 cells. Although the MYC and BCL2 gene expression decreased, JQ1 did not affect the c-Myc targeted genes to affect the cell cycle, nor did it trigger the BCL2-mediated apoptosis pathway. On the contrary, after JQ1 induced the MV-4-11 cells, the MYC-mediated cell cycle significantly slowed down and arrested at the G0/G1 phase. The death of MV-4-11 tumor cells through the apoptosis pathway regulated by BCL-2 family. Conclusion JQ1 has different pharmacological effects on two myeloid leukemia cell lines. For MV-4-11, JQ1 mainly inhibited cell cycle by regulating MYC pathway and induced BCL-2-mediated apoptosis to kill myeloid leukemia tumor cells and thus perform anti-tumor effects. K-562 cells showed drug resistance to JQ1 which confirmed that the K-562 cell line has a feedback mechanism that prevents JQ1-induced apoptosis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4330-4330
Author(s):  
Shengli Xue ◽  
Lan Dai ◽  
Yan Chen ◽  
Qiaocheng Qiu ◽  
Suning Chen ◽  
...  

Abstract Abstract 4330 Objectives To observe the proliferative effect on acute lymphocytic leukemia (ALL) cell lines caused by G-CSF, and to evaluate the synergetically anti-leukemic effect on these cell lines produced by Ara-C combined with G-CSF. Methods With fluorescence quantitation kit and flow cytometry, G-CSFR expression density of 5 ALL cell lines were detected, and expression density changes due to G-CSF stimulation were evaluated. After treatment by G-CSF of various concentrations, changes of cell cycle and cell proliferation in ALL cell lines were examined by DNA-PREP-TM kit and Cell Counting Kit (CCK-8), respectively. After treatment by different concentration's Ara-C combined with different concentration's G-CSF, ALL cell lines’ existing cell viability were detected by CCK-8. Results All 5 ALL cell lines expressed G-CSFR, 2 ALL cell lines including CCRF-CEM and 697 exhibited G-CSFR expression density up-regulation tendency after G-CSF's stimulation, while 3 T-ALL cell lines including MOLT-4, Jurkat,Clone E6-1, A3 showed G-CSFR expression density down-regulation tendency after G-CSF's stimulation, which was similar in neutrophil. Cell cycle analysis showed that S phase cell proportion in MOLT-4, Jurkat,Clone E6-1, A3 cell lines had a growing tendency after G-CSF’ treatment, while no similar tendency was observed in CCRF-CEM, 697 cell lines. A relatively proliferative advantage was found in MOLT-4, Jurkat,Clone E6-1, A3 cell lines after G-CSF's treatment, but only in MOLT-4 there was a statistically significance after 10ng/ml G-CSF's stimulation. A synergetically anti-leukemic effect was observed in MOLT-4, Jurkat,Clone E6-1, A3 cell lines after Ara-C's treatment combined with G-CSF. Conclusions The biological characteristics of ALL cell lines expressing G-CSFR was different from each other. Synergetically anti-leukemic effect produced by cytotoxic agent and G-CSF could occur in ALL cell lines which showed a growing S phase cell proportation after G-CSF's treatment. ALL cell's response to G-CSF, which means down-regulation of G-CSFR expression density, seems a promising indicator that a synergetically effect could be produced by Ara-C plus G-CSF. Before this indicator could be applied for guiding ALL patients’ management, clinical researches are needed to confirm it. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 4131-4136 ◽  
Author(s):  
LanLan Shen ◽  
Minoru Toyota ◽  
Yutaka Kondo ◽  
Toshiro Obata ◽  
Sophia Daniel ◽  
...  

Abstract P57KIP2 is a cyclin-dependent kinase inhibitor silenced in a variety of human malignancies. DNA methylation of a region surrounding the transcription start site of p57KIP2 was found in acute lymphocytic leukemia (ALL)–derived cell lines. Methylation of this region correlated with gene silencing, and treatment of methylated/silenced cell lines with 5-aza-2′-deoxycytidine resulted in gene re-expression. P57KIP2 was methylated in 31 (50%) of 63 patients with newly diagnosed ALL, and in 11 (52%) of 21 patients with relapsed ALL. In 5 of them (25%), methylation was acquired at relapse. No association was observed between methylation of p57KIP2 alone and clinical-biologic characteristics studied, including overall survival (OS) or disease-free survival. Methylation of multiple genes in a cell-cycle regulatory pathway composed of p73, p15, and p57KIP2 occurred in 22% of Philadelphia chromosome (Ph)–negative patients. Ph-negative patients with methylation of 2 or 3 genes of this pathway had a significantly worse median OS compared with those with methylation of 0 or 1 gene (50 vs 467 weeks, respectively;P = .02). Our results indicate that p57KIP2 is frequently methylated in adult patients with ALL, and that inactivation of a pathway composed of p73, p15, and p57KIP2 predicts for poor prognosis in Ph-negative patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 706-706 ◽  
Author(s):  
Xueqing Liang ◽  
Jakub Tolar ◽  
Jeffery S. Miller ◽  
Tucker W. LeBien ◽  
Bruce R. Blazar ◽  
...  

Abstract Acute lymphocytic leukemia (ALL) is the most common childhood leukemia and remains a difficult disease with poor survival in patients who have failed standard therapy. New therapeutic strategies are needed to achieve longer survival and improved cure rates in both pediatric and adult ALL patients. In this study, we show human B-lineage acute lymphocytic leukemia (B-ALL) cell lines (6/6 tested) and CD19+CD10+ primary B-ALL cells from patients (8/8 tested) express TLR7 mRNA by real-time RT-PCR and TLR7 proteins by Western blot. Triggering TLR7 on B-ALL cells with a TLR7 agonist (imiquimod) significantly increases the cell surface expression of molecules essential for T cell activation (CD40, CD54, CD80, CD86, and HLA-DR), the ligands for NKG2D and ligands for natural cytotoxicity receptors (NKp30, NKp44, and NKp46) which regulate NK-mediate killing. Thus, TLR7 signaling enhances the immunogenicity of B-ALL cells and makes them more suitable targets for T cell and NK cell mediated attack. Most importantly, TLR7 agonists strongly suppress in vitro growth of B-ALL cell lines (RS4;11, BLIN-1) and induces profound apoptosis of primary B-ALL cells from patients in culture in a TLR7 agonist dose-dependent manner. Both t(4;11)-positive RS4;11 cells and t(4;11)-negative BLIN-1 cells proliferate rapidly in culture with a 30–40 fold increases of leukemia cell number in 7 days. The addition of TLR7 agonist at 10 ug/ml fully inhibit the growth of RS4;11 and BLIN-1 cells in culture. Furthermore, TLR7 agonist treatment dramatically induces apoptosis of primary B-ALL cells isolated from the patients (2/2 with t(9;22), 6/6 without t(9;22)) with 0.4%–13.3% leukemia cells left at day 5 of culture. The TLR7 agonist-mediated apoptotic death of B-ALL cells was conformed by viable cell counts, TMRE staining, and, Western blots of the activation and cleavage of caspases. To study the in vivo therapeutic effects of TLR7 agonist against human B-ALL, RS4;11 and BLIN-1 cells were luciferase labeled and injected into NOD/SCID mice. Both RS4;11 and BLIN-1 leukemia cells engrafted in multiple organs (BM, spleen, liver, lymph nodes, kidney) resulting in uniform lethality of RS4;11 mice in 8 weeks and BLIN-1 mice in 12 weeks, respectively. Flow cytometry and tissue staining results confirmed that these organs were massively infiltrated with human CD45+19+ leukemia cells. To determine whether TLR7 preincubation of RS4;11 or BLIN-1 cells would prolong survival due to an apoptotic effect, cohorts of mice were injected with a lethal dose of RS4;11 or BLIN-1 cells with or without pre-incubation with TLR7 agonist. Mice receiving TLR7 agonist pre-pretreated B-ALL cells had a significant increase in long-term survival rate and significant reduction in tumor burden at the time points evaluated. These in vivo results confirm previous in vitro findings and suggest that TLR agonist-treated B-ALL cells are programmed to die. The antitumor efficacy of systemic administration of TLR7 agonist in NOD/SCID mice with established B-ALL is being investigated using these xenograft mouse models. These results form the basis for a clinical trial of systemic TLR7 agonist administration for treating patients with B-ALL. In summary, we have shown that TLR7 targeting increases B-ALL immunogenicity and directly induces B-ALL apoptosis, providing new insights into the biology and therapy of B-ALL.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2631-2631
Author(s):  
Anna Kaci ◽  
Emilie Adiceam ◽  
Melanie Dupont ◽  
Marine Garrido ◽  
Jeannig Berrou ◽  
...  

Introduction: The dual-specificity protein kinase, monopolar spindle 1 (Mps1) is one the main kinases of the spindle assembly checkpoint (SAC) critical for accurate segregation of sister chromatids during mitosis. A hallmark of cancer cells is chromosomal instability caused by deregulated cell cycle checkpoints and SAC dysfunction. Mps1 is known to be overexpressed in several solid tumors including triple negative breast cancer. Thus, Mps1 seems to be a promising target and small molecules targeting Mps1 entered clinical trials in solid tumors. ALL originates from malignant transformation of B-and T-lineage lymphoid precursors with a variety of genetic aberrations including chromosome translocations, mutations, and aneuploidies in genes responsible for cell cycle regulation and lymphoid cell development. While outcome is excellent for pediatric patients and younger adults, relapsed and refractory disease still remain a clinical challenge for elder patients. Here, we demonstrate for the first time preclinical efficacy of the small molecule Mps1 inhibitor (Mps1i) S81694 in T- and B- ALL cells including BCR-ABL1+-driven B-ALL. Materials and Methods: Expression of Mps1 was determined by RT-qPCR and WB in JURKAT, RS4-11 and BCR-ABL1+ cells (BV-173 and TOM-1). A small molecule Mps1i (S81694) was tested alone (0 to 1000nM) or in combination with imatinib, dasatinib, nilotinib and ponatinib in BCR-ABL1+ ALL cell lines. Cell viability and IC50 was assessed by MTS assays after exposure to Mps1i for 72h. In combination experiments, compounds were added simultaneously and relative cell numbers were determined at 72h with MTS assays and combination index (CI) values were calculated according to the Bliss model. Induction of apoptosis was evaluated by annexin-V exposure and PI incorporation at 72h with increasing doses of Mps1i. Cell-cycle distribution was determined by cytofluorometric analysis detecting nuclear propidium iodide (PI) intercalation at 48h. Phosphorylation of Mps1 was detected in synchronized (by nocodazole and MG-132) cells by immunofluorescence using an anti phospho-Mps1 antibody detecting Thr33/Ser37 residues. Time-lapse microscopy was used in cell lines in presence or absence of S81694 to determine mitosis duration. Bone marrow (BM) nucleated patient cells were obtained after informed consent and incubated in methylcellulose with cytokines with or without Mps1i for 2 weeks to determine colony growth. Results: Expression of Mps1 could be detected by RT-qPCR and at the protein level by WB in all cell lines (Figure 1A and B ). IC50 after Mps1i exposure alone was 126nM in JURKAT cells, 51nM in RS4-11 cells, 75nM in BV-173 cells and 83nM in TOM-1. Significant apoptosis as detected by phosphatidylserine exposure and PI incorporation in all cell lines with BCR-ABL1+ cell lines BV-173 and TOM-1 cells being the most sensitive (80% and 60% apoptotic cells respectively)(Figure 1C). Upon Mps1i exposure we observed targeted inhibition of Mps1 phosphorylation at Thr33/Ser37 residues indicating the specific on target effect of S81694 by inhibiting Mps1 autophosphorylation (Figure 1D and E). Cell cycle profile was generally lost after treatment with S81694 in all cell lines indicating aberrant 2n/4n distribution due to SAC abrogation (Figure 1F). Furthermore, we demonstrated that S81694 exposure accelerated significantly mitosis in BV-173 cell line from 36 minutes to 19 minutes indicating effective inhibition of SAC function (Figure 1G). Interestingly, S81694 induced significant apoptosis (70%) in the imatinib resistant BV173 cell line bearing the E255K-BCR-ABL1-mutation. Combination of S81694 with TKI imatinib, dasatinib and nilotinib (but not ponatinib) was strongly synergistic in BCR-ABL1+ cells (Figure 1H). Finally, we observed inhibition of colony formation in a patient with BCR-ABL1+ B-ALL after exposure to 100nM and 250nM S81694 (reduction of 85% and 100% respectively)(Figure 1I). Conclusion: Mps1i S81694 yields significant preclinical activity in T-and B-cell ALL including BCR-ABL1+ models. Interestingly S81694 was efficacious in a TKI resistant cell line. Disclosures Kaci: Institut de Recherches Internationales Servier (IRIS): Employment. Garrido:Institut de Recherches Internationales Servier (IRIS): Employment. Burbridge:Institut de Recherches Internationales Servier (IRIS): Employment. Dombret:AGIOS: Honoraria; CELGENE: Consultancy, Honoraria; Institut de Recherches Internationales Servier (IRIS): Research Funding. Braun:Institut de Recherches Internationales Servier (IRIS): Research Funding.


2013 ◽  
Vol 59 (5) ◽  
pp. 498-513 ◽  
Author(s):  
O.Yu. Abakumova ◽  
O.V. Podobed ◽  
P.A. Karalkin ◽  
L.I. Kondakova ◽  
N.N. Sokolov

We have studied dose- and time-dependent antitumor and cytotoxic effects of Erwinia carotovora L-asparaginase (ECAR LANS) and Escherichia coli L-asparaginase (MEDAC) on human leukemic cells and human and animal solid tumor cells. We determined the sensitivity of tumor cells to L-asparaginases, as well the effect L-asparaginases on cell growth rate, protein and DNA synthesis per se and with addition of different cytostatics. The data obtained demonstrated that ECAR LANS L-asparaginase suppressed growth of all tested solid tumor cells. Evaluation of leukemic cell number after treatment with L-asparaginases for 24, 48 and 72 h demonstrated that asparagine deficiency did not kill cells but stopped normal cell division and had no effect on protein and DNA synthesis. Cytofluorometric study of solid and leukemic cells demonstrated that the treatment with L-asparaginase for 72 h did not change cell cycle phase distribution and did not increase the number of apoptotic cells. The HL-60 cell line was only exemption. At the same time, cells treatment with L-asparaginase and doxorubicin combination leaded to increase of apoptotypical cell number to 60% for MCF7 cells, to 40% for Jurkat cells and to 99% for HL-60 cells. We have excluded apoptosis as main reason for tumor cell death after asparaginase treatment because multi resistant Jurkat/A4 cells have been asparaginase sensitive. We have not found ECAR LANS L-asparaginase effect on normal human fibroblasts growth ability and we had come to conclusion that enzyme cytotoxcisity related only with asparagine deficiency.


Sign in / Sign up

Export Citation Format

Share Document