scholarly journals Phytotoxic and Antibacterial Activity of Essential Oil of New Peppermint Cultivar

2016 ◽  
Vol 11 (11) ◽  
pp. 1934578X1601101
Author(s):  
Daniela Grul'ová ◽  
Laura De Martino ◽  
Emilia Mancini ◽  
L'udmila Tkáčiková ◽  
Ivan Šalamon ◽  
...  

A new menthol cultivar of Mentha x piperita L. bred in East Slovakia was evaluated for the biological activity of its essential oils (EOs). The content and composition of the EO components changed during plant development and the different effects of samples collected each month (April - September) within the growing season were noted. EOs are considered to be an important source of potential allelochemicals. Changes in EO composition influenced phytotoxic activity. Stimulation and inhibition of seed germination and root elongation occurred with different EO concentrations. The four tested bacterial strains presented different resistance to the samples collected in different growing periods.

2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


Author(s):  
R. Cabrera-Contreras ◽  
R. Morelos-Ramírez ◽  
J. P. Quiróz-Ríos ◽  
D. Muñoz-Quiróz

Essential oils (EOs) are commonly used in food industry, due that they possess antioxidative and antimicrobial properties. There are few essential oils that have been used in medicine, due to its potent antibacterial activity against intrahospital pathogens. OEO has experimentally shown potent antibacterial effect on nosocomial Gram-positive bacteria, therefore it can be very useful in hospital environments, where there are many bacterial pathogens, which are the etiological agents of nosocomial infections and most of them are resistant to several antibiotics. Objective: The aim of this study was to determine antimicrobial effect of OEO on most frequent bacterial intrahospital pathogens: MRSA, MRSE comparatively to selected ATCC bacterial reference strains. Methods: This experimental study investigates the antibacterial action of oregano (Origanum vulgare) essential oil (OvEO) on two human pathogens: Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) Here, we used OEO against one of the most prominent antibiotic-resistant bacterial strains: methicillin-resistant SA (MRSAmecA+ = Meticillin Resistant SA and mecA- = Meticillin Resistance SA ), methicillin-resistant SE (MRSEmecA+ = Meticillin Resistance Staphylococcus epidermidis mecA+) and reference strains: S. aureus ATCC 700699, S. epidermidis ATCC 359845 and E. coli ATCC 25922. Bactericidal effects of the OEO on these bacteria were mainly evaluated using undiluted and four serial dilutions in coconut oil (CCO) l: 1:10, 1:100, 1:200, 1:400. Results: OEO, undiluted and 4 serial dilutions showed potent antibacterial activity against all strains tested. In conclusion, this OEO could be used as an alternative in medicine. The ability of OEO to inhibit and kill clinical Multi-Drug-Resistant (MDR): MRSA and MRSE strains, highlights it´s potential for use in the management of drug-resistant MDR infections in hospitals wards.


2018 ◽  
Vol 23 ◽  
pp. 2515690X1775131 ◽  
Author(s):  
Farhad Sharafati Chaleshtori ◽  
Mohamad Saholi ◽  
Reza Sharafati Chaleshtori

This research was aimed at investigating the antioxidant and antibacterial activity of Bunium persicum, Eucalyptus globulus, and rose water on multidrug-resistant Listeria species. The antibiotic resistance of Listeria spp obtained from seafood samples were determined by the Kirby-Bauer method. The antioxidant and antibacterial activity of the essential oils and extracts were evaluated using ferric reducing antioxidant power and microdilution methods, respectively. A total 2 samples (1.88%) were positive for Listeria spp. L monocytogenes was found to be resistant to ampicillin, amoxicillin/clavulanic acid, penicillin, vancomycin, and kanamycin. B persicum essential oil showed the greatest antioxidant activity (248.56 ± 1.09 µM Fe2+/g). The E globulus essential oil showed consistently strong antimicrobial activity against L monocytogenes and L grayi, while rose water showed no antimicrobial activity against any of the tested bacterial strains. The results showed that after adding the B persicum and E globulus essential oils to bacteria, the cell components’ release increased significantly.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900
Author(s):  
Lucéia Fátima Souza ◽  
Ingrid Bergman Inchausti de Barros ◽  
Emilia Mancini ◽  
Laura De Martino ◽  
Elia Scandolera ◽  
...  

The chemical composition of the essential oil of Anredera cordifolia (Ten.) Steenis (Basellaceae), grown in Brazil, was studied by means of GC and GC-MS analysis. In all, 19 compounds were identified, accounting for 91.6% of the total oil; hydrocarbons were the main constituents (67.7%). The essential oil was evaluated for its in vitro potential phytotoxic activity against germination and initial radicle growth of Raphanus sativus L., Sinapis arvensis L., and Phalaris canariensis L. seeds. At 1.25 μg/mL and 0.625 μg/mL, the oil significantly promoted the germination of S. arvensis. Moreover, the antimicrobial activity of the essential oil was assayed against ten bacterial strains. The essential oil showed a weak inhibitory activity against the Gram-positive pathogens.


2011 ◽  
Vol 6 (12) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Lalit Mohan ◽  
Anuradha Negi ◽  
Anand B. Melkani ◽  
Vasu Dev

The composition of steam volatile oil from aerial parts of Salvia mukerjeei Bennet & Raizada (Lamiaceae) was analyzed by capillary GC and GCMS. The oil was rich in sesquiterpene hydrocarbons (67.3%). Among 71 identified constituents representing 91.7% of the oil, β-caryophyllene (28.7%), γ-muurolene (15.5%) and dehydro-aromadendrane (9.5%), were the principal constituents. The oil was tested against ten bacterial strains and was active against Enterococcus faecalis, Erwinia chrysanthemi and Agrobacterium tumefaciens.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 241 ◽  
Author(s):  
Jana Jurová ◽  
Martina Matoušková ◽  
Anna Wajs-Bonikowska ◽  
Danuta Kalemba ◽  
Marek Renčo ◽  
...  

Impatiens parviflora is non-native invasive plant species occupying large areas all over the Europe and threatens native communities by altering their species composition and reducing native biodiversity. The factor responsible for its spreading could be explained by releasing biochemical to the environment. On the other hands, high demand on secondary metabolites as potential source of new ecofriendly biocides could be beneficial. The analysis of I. parviflora essential oil (EO) led us to identify more than 60 volatiles. The main compound was hexahydrofarnesyl acetone, other dominant components were phytol, carvacrol, germacra-4(15),5,10(14)-trien-1-α-ol, and pentacosane. The potential phytotoxic effect of I. parviflora EO collected in two vegetation periods (summer and autumn) was evaluated on seed germination and root elongation of three dicot species (Raphanus sativus, Lepidum sativum, and Lactuca sativa) and on one monocot species (Triticum aestivum). The seed germination of only one dicot species, L. sativa, was affected by both EOs. In contrast, seed germination of monocot species T. aestivum was influenced only by the highest doses of EOs isolated from I. parviflora in autumn. The root elongation of tested plant species was less influenced by I. parviflora EOs. L. sativum showed sensitivity to one dose of EOs hydrodistilled in summer, while the monocot species was influenced by both EOs samples in highest doses. Our findings revealed that I. parviflora contained phenolics that were phytotoxic to the germination of some plant species, mainly at higher EOs doses, while root elongation of tested plants was not suppressed by essential oils.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Dejan M. Nikolić ◽  
Olga G. Cvetković ◽  
...  

The composition and antimicrobial activity of the essential oil of Heracleum sibiricum L. (Apiaceae) was studied. The aerial part of plant was hydro-distilled and chemical composition of the essential oil was analyzed by GC and GC-MS. Forty-six compounds, corresponding to 95.12% of the total oil, were identified. Esters represented the major chemical class (69.55%) while the main constituents were octyl butanoate (36.82%), hexyl butanoate (16.08%), 1-octanol (13.62%) and octyl hexanoate (8.10%). Antibacterial activity of the essential oil and reference antibiotics against nine bacterial strains was tested by the broth microdilution method. The results of the bioassays showed that essential oil had slight antimicrobial activities against all tested microorganisms (MIC and MBC values were in the range of 2431.2 to 9724.8 μg/mL). Reference antibiotics were active in concentrations between 0.5 and 16.0 μg/mL. The results confirm that Gram-positive bacteria were more susceptible to the essential oil of H. sibiricum, in comparison with Gram-negative bacteria.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 20-24 ◽  
Author(s):  
Fereshteh Eftekhar ◽  
Fereshteh Raei ◽  
Morteza Yousefzadi ◽  
Samad Nejad Ebrahimi ◽  
Javad Hadian

The aerial parts of Satureja spicigera were collected at full flowering stage at Gazvin, Iran. The essential oil was isolated by hydrodistillation and analyzed by a combination of capillary GC and GC-MS. Fourteen compounds were identified, of which carvacrol (53.74%) and thymol (36.03%) were the main constituents, representing 99.12% of the total oil. The in vitro antibacterial activity of the essential oil was determined against six ATCC standard bacterial strains (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using disc diffusion as well as measurement of minimum inhibitory concentrations. The disc diffusion results and MIC values indicated high inhibitory activity against the test bacteria. The most susceptible organisms were the Gram-positive B. subtilis and S. aureus followed by E. faecalis, usually resistant to most common antibiotics. Among the Gram-negative bacteria, E. coli and K. pneumoniae were highly sensitive to the different oil concentrations in the disc diffusion method. Finally, P. aeruginosa, a highly resistant organism to most antibiotics, showed moderate susceptibility to Satureja spicigera essential oil.


Author(s):  
Dalila Razni ◽  
Linda Rouisset ◽  
Elhassan Benyagoub

This study is a part of the valorization of extract from three most commonly used Algerian spices, namely; caraway and cumin seeds and cinnamon bark. On the one hand, it aims at characterizing the chemical indices of extracted essential oils and evaluating the antibacterial activity of each essential oil by titration and disc diffusion method respectively. On the other hand, it attempts at evaluating the combined action of essential oils against four reference pathogenic bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis by well and Chabbert-type diffusion method. The essential oils obtained by the hydrodistillation method have a relatively average extraction about 1.43, 2.3 and 2.5%, respectively for caraway, cumin, and cinnamon. The acid index indicates the behavior and amount of free acids present in the essential oil, in which the acid and saponification indices of cinnamon essential oil indicate a value of 4.48 and 168.56 respectively. It can also inform us about the susceptibility of the oil to undergo alterations. The antibacterial activity results showed that cinnamon essential oil (EO) proved to be the most active against the tested bacterial strains; caraway EO was active against Enterococcus faecalis, and the antibacterial action of cumin EO was the lowest. However, the association of the extracted essential oils has a higher synergistic effect than the independent effect of each essential oil, in which the MIC value found was estimated at 10 to 20 (V/V), 40 to 50 (V/V) and 50 to 70 (V/V) respectively for cinnamon, cumin and caraway. The obtained results show that the response to the antibacterial activity varies according to the plant species used and the extract tested alone or in combination.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Branislava D. Kocić

The chemical composition and antibacterial activity of Nepeta nuda (Lamiaceae) essential oil were examined, as well as the association between it and standard antibiotics: tetracycline and streptomycin. The antibacterial activities of 1,8-cineole, the main constituent of N. nuda oil, individually and in combination with standard antibiotics were also determined. The interactions of the essential oil and 1,8-cineole with antibiotics toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemoinformatics methods. Oxygenated monoterpenes were the most abundant compound class in the oil (57.8%), with 1,8-cineole (46.0%) as the major compound. The essential oil exhibited in vitro antibacterial activity against all tested bacterial strains, but the activities were lower than those of the standard antibiotics. The combinations N. nuda oil-antibiotic and 1,8-cineole-antibiotic produced a predominantly antagonistic interactions. Chemoinformatics survey confirms the antagonistic interactions as a consequence of membrane potential/proton motive force dissipation. These data indicate cytochrome c oxidase as a target for 1.8-cineole toxicity action mechanisms.


Sign in / Sign up

Export Citation Format

Share Document