scholarly journals Alkaloid Profiles and Activity in Different Mitragyna speciosa Strains

2018 ◽  
Vol 13 (9) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Luisa Boffa ◽  
Corrado Ghè ◽  
Alessandro Barge ◽  
Giampiero Muccioli ◽  
Giancarlo Cravotto

Mitragyna speciosa (K.) H. (Kratom) is a tree that possesses stimulant and opioid-like analgesic effects, and is indigenous to Southeast Asia and Indochina, where it has seen widespread use for hundreds of years. The principal pharmacologically active alkaloids in kratom leaves include mitragynine (MG), 7-hydroxymitragynine (HMG), speciociliatine (SC), speciogynine (SG) and paynantheine (P). The pharmacological effects induced and their potency can vary dramatically according to variations in the proportions of alkaloid compounds present, which are related to geographic origin, stage of maturity and ecotype. Much of the analgesic and opiate-like psychoactive effect of kratom has been associated with the MG and HMG detected in M. speciosa (K.). H. Five different strains of M. speciosa (K.) H., which present differing vein colours and geographic origin, have been studied herein; red vein strains from Thailand, Malaysia and Bali, named Red Thai, Red Malay and Red Bali, a white vein strain from Borneo (White Borneo) and a green vein strain from Malaysia (Green Malay) were included in the study. Plant leaves were extracted under magnetic stirring at room temperature in a MeOH/H2O 1:1 mixture. Purified alkaloids were isolated in a number of organic extraction steps, from either aqueous basic or acidic phases, that culminated in precipitation (yields between 0.94 and 1.43%). These samples have been analysed using HPLC-DAD, HPLC-MS, HPLC-MS/MS and GC-MS to optimize the identification and quantification of the principal alkaloids present in the different strains. 24 alkaloids were detected in Red Bali whereas 11 compounds were found in the other varieties. Red Thai, Red Bali, Green Malay and White Borneo strains had a higher w/w percentage for MG than for P, while P was more abundant in Red Malay. The Green Malay variety (GMK) showed the highest w/w percentages for MG and total alkaloids in its extracts (59.7 and 94.9% respectively). The Green Malay variety was therefore chosen for in vivo pharmacological studies. The Green Malay extract has shown remarkable and significant antinociceptive and anti-inflammatory activity in mouse hot plate and carrageenan-induced paw edema tests.

2018 ◽  
Vol 16 (S1) ◽  
pp. S55-S64
Author(s):  
G. Hajjaj ◽  
A. Bahlouli ◽  
M. Tajani ◽  
K. Alaoui ◽  
Y. Cherrah ◽  
...  

Ormenis mixta L. is traditionally used for central nervous system (CNS)-related diseases. Its anti-stress properties have received attention in Moroccan traditional medicine and aromatherapy. However, no pharmacological studies have yet been undertaken on this plant in Morocco. The present study provides a preliminary phytochemical screening and psychopharmacological profile of the essential oil and aqueous extract from Ormenis mixta L. by using behavioral tests in vivo, at graded doses. The result of this research shows that Ormenis mixta L. was safe up to 2 g/kg b.w. (body weight) in the acute toxicity study, possesses potential psychostimulant effect, and has antianxiety and antidepressant-like activity. This activity profile of Ormenis mixta L. was similar to the typical psychostimulant, caffeine. The exact mechanism of action underlying this stimulant-like effect should be clarified with further detailed studies. These results explained the extensive use of Ormenis mixta L. as a traditional medicine in Morocco.


2020 ◽  
Vol 21 (5) ◽  
pp. 499-508 ◽  
Author(s):  
Rémi Safi ◽  
Marwan El-Sabban ◽  
Fadia Najjar

Ferula hermonis Boiss, is an endemic plant of Lebanon, locally known as “shilsh Elzallouh”. It has been extensively used in the traditional medicine as an aphrodisiac and for the treatment of sexual impotence. Crude extracts and isolated compounds of ferula hermonis contain phytoestrogenic substances having a wide spectrum of in vitro and in vivo pharmacological properties including anti-osteoporosis, anti-inflammatory, anti-microbial and anti-fungal, anti-cancer and as sexual activity enhancer. The aim of this mini-review is to highlight the traditional and novel applications of this plant’s extracts and its major sesquiterpene ester, ferutinin. The phytochemical constituents and the pharmacological uses of ferula hermonis crude extract and ferutinin specifically will be discussed.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
Nilufar Z. Mamadalieva ◽  
Davlat Kh. Akramov ◽  
Ludger A. Wessjohann ◽  
Hidayat Hussain ◽  
Chunlin Long ◽  
...  

The genus Lagochilus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus Lagochilus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from Lagochilus, including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. In vitro and in vivo pharmacological studies on the crude extracts, fractions, and isolated compounds from Lagochilus species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 410
Author(s):  
Salar Hafez Ghoran ◽  
Anake Kijjoa

Alzheimer’s disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to perform simple tasks. As the aging population continues to increase exponentially, AD has become a big concern for society. Therefore, neuroprotective compounds are in the spotlight, as a means to tackle this problem. On the other hand, since it is believed—in many cultures—that marine organisms in an individual diet cannot only improve brain functioning, but also slow down its dysfunction, many researchers have focused on identifying neuroprotective compounds from marine resources. The fact that the marine environment is a rich source of structurally unique and biologically and pharmacologically active compounds, with unprecedented mechanisms of action, marine macroorganisms, such as tunicates, corals, sponges, algae, as well as microorganisms, such as marine-derived bacteria, actinomycetes, and fungi, have been the target sources of these compounds. Therefore, this literature review summarizes and categorizes various classes of marine-derived compounds that are able to inhibit key enzymes involved in AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase (BACE-1), and different kinases, together with the related pathways involved in the pathogenesis of AD. The compounds discussed herein are emerging as promising anti-AD activities for further in-depth in vitro and in vivo investigations, to gain more insight of their mechanisms of action and for the development of potential anti-AD drug leads.


2016 ◽  
Vol 62 (7) ◽  
pp. 543-549 ◽  
Author(s):  
Martin Beaudoin-Nadeau ◽  
André Gagné ◽  
Cyntia Bissonnette ◽  
Pier-Anne Bélanger ◽  
J. André Fortin ◽  
...  

Canadian oil sands tailings are predominately sodic residues contaminated by hydrocarbons such as naphthenic acids. These conditions are harsh for plant development. In this study, we evaluated the effect of inoculating roots of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa with ectomycorrhizal fungi in the presence of tailings compounds. Seedlings were inoculated with 7 different strains of Paxillus involutus and Alpova diplophloeus and were grown under different treatments of NaCl, Na2SO4, and naphthenic acids in a growth chamber. Afterwards, seedling survival, height, dry biomass, leaf necrosis, and root mycorrhization rate were measured. Paxillus involutus Mai was the most successful strain in enhancing alder survival, health, and growth. Seedlings inoculated with this strain displayed a 25% increase in survival rate, 2-fold greater biomass, and 2-fold less leaf necrosis compared with controls. Contrary to our expectations, A. diplophloeus was not as effective as P. involutus in improving seedling fitness, likely because it did not form ectomycorrhizae on roots of either alder species. High intraspecific variation characterized strains of P. involutus in their ability to stimulate alder height and growth and to minimize leaf necrosis. We conclude that in vivo selection under bipartite symbiotic conditions is essential to select effective strains that will be of use for the revegetation and reclamation of derelict lands.


2021 ◽  
Vol 607 ◽  
pp. 121050
Author(s):  
Dnyandev Gadhave ◽  
Shrikant Tupe ◽  
Amol Tagalpallewar ◽  
Bapi Gorain ◽  
Hira Choudhury ◽  
...  

2021 ◽  
Vol 3 ◽  
pp. 119-127
Author(s):  
G.M. Baisarov ◽  
◽  
S.M. Adekenov ◽  

The reaction of 5-hydroxy-7-methoxy-2-phenylchroman-4-one with dibromoalkanes in acetone in the presence of potassium carbonate proceeds according to the Michael’s retro-reaction O-alkylation and leads to the formation of the corresponding 2-(bromo-alkoxy) chalcones. The structure of the synthesized compounds was confirmed by IR-, 1H- and 13C-NMR spectroscopy. The cytotoxic, hepatoprotective and anti-inflammatory effects of chalcone derivatives (2-3) were studied for the first time in vitro and in vivo.


2021 ◽  
Author(s):  
Yipu Wang ◽  
Dong Mei ◽  
Xinyi Zhang ◽  
Da-Hui Qu ◽  
Ju Mei ◽  
...  

With increase of social aging, Alzheimer's disease (AD) has been one of the serious diseases threatening human health. The occurrence of A<i>β </i>fibrils<i> </i>or plaques is recognized as the hallmark of AD.<i> </i>Currently, optical imaging has stood out to be a promising technique for the imaging of A<i>β</i> fibrils/plaques and the diagnosis of AD. However, restricted by their poor blood-brain barrier (BBB) penetrability, short-wavelength excitation and emission, and aggregation-caused quenching (ACQ) effect, the clinically used gold-standard optical probes such as <a>thioflavin</a> T (ThT) and thioflavin S (ThS), are not effective enough in the early diagnosis of AD <i>in vivo</i>. Herein, we put forward an “all-in-one” design principle and demonstrate its feasibility in developing high-performance fluorescent probes which are specific to A<i>β</i> fibrils/plaques and promising for super-early <i>in</i>-<i>vivo</i> diagnosis of AD. As a proof of concept, a simple rod-like amphiphilic NIR fluorescent AIEgen, i.e., AIE-CNPy-AD, is developed by taking the specificity, BBB penetration ability, deep-tissue penetration capacity, high signal-to-noise ratio (SNR) into consideration. AIE-CNPy-AD is constituted by connecting the electron-donating and accepting moieties through single bonds and tagging with a propanesulfonate tail, giving rise to the NIR fluorescence, aggregation-induced emission (AIE) effect, amphiphilicity, and rod-like structure, which in turn result in high binding-affinity and excellent specificity to A<i>β</i> fibrils/plaques, satisfactory ability to penetrate BBB and deep tissues, ultrahigh SNR and sensitivity, and high-fidelity imaging capability. <i>In-vitro, ex-vivo,</i> and <i>in-vivo</i> <a>identifying of A<i>β</i> fibrils/plaques</a> in different strains of mice indicate that AIE-CNPy-AD holds the universality to the detection of A<i>β</i> fibrils/plaques. It is noteworthy that AIE-CNPy-AD is even able to trace the small and sparsely distributed A<i>β</i> fibrils/plaques in very young AD model mice such as 4-month-old APP/PS1 mice which are reported to be the youngest mice to have A<i>β</i> deposits in brains, suggesting its great potential in diagnosis and intervention of AD at a super-early stage.


Sign in / Sign up

Export Citation Format

Share Document