scholarly journals Effect of Herbal Medicinal Compounds on Alzheimer’s Disease Pathology in APP/PS1 Transgenic Mouse Model

2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094898
Author(s):  
Xuexia Li ◽  
Zhijun He ◽  
Chao Wang ◽  
Yanjun Liu ◽  
Zhifu Shan ◽  
...  

The pathogenesis of Alzheimer’s disease (AD) is complex as various mechanisms interact with each other and, therefore, intervention from a single target is often ineffective. Many studies have shown that herbal medicines, such as curcumin, fisetin, icariin, and ginsenosides, have significant intervention effects on AD with different treatment mechanisms. Therefore, we have designed this study to know whether the combination of these herbal medicines can have an intervention effect on AD through multiple targets. Amyloid precursor protein/presenilin 1(APP/PS1) double transgenic AD mice were used to study the protective effects of a combination of curcumin, piperine, icariin, and ginsenosides, as well as a combination of fisetin, piperine, icariin, and ginsenosides, which were separately mixed into the feed. These herbal medicinal compounds (HMCs) lowered the serum lipid levels, reduced the Aβ oligomers, decreased the pS404-tau protein, as well as neurofibrillary tangles, and restored the reduction of synaptic protein levels and neuronal death of AD mice without causing toxicity to liver and kidneys. In this study, we found that HMCs have significant intervention against AD through multiple targets, providing a novel therapeutic idea for the prevention of AD.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ping Liu ◽  
Mingwang Kong ◽  
Shihe Yuan ◽  
Junfeng Liu ◽  
Ping Wang

Traditional Chinese medicine (TCM) is practiced in the Chinese health care system for more than 2,000 years. In recent years, herbal medicines, which are used to treat Alzheimer's disease (AD) in China based on TCM or modern pharmacological theories have attracted considerable attention. In this paper, we discuss etiology and pathogenesis of AD, TCM therapy, and herbal extracts for the treatment of AD. There is evidence to suggest that TCM therapy may offer certain complementary cognitive benefits for the treatment of AD. Chinese herb may have advantages with multiple target regulation compared with the single-target antagonist in view of TCM.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian-Xiang Zhang ◽  
Yi-Hui Lai ◽  
Pan-Ying Mi ◽  
Xue-Ling Dai ◽  
Ran Zhang ◽  
...  

Abstract Background Brain amyloid deposition is one of the main pathological characteristics of Alzheimer’s disease (AD). Soluble oligomers formed during the process that causes β-amyloid (Aβ) to aggregate into plaques are considered to have major neurotoxicity. Currently, drug development for the treatment of Alzheimer’s disease has encountered serious difficulties. Our newly proposed solution is to accelerate the aggregation of Aβ to reduce the amount of cytotoxic Aβ oligomers in brain tissue. This strategy differs from the existing strategy of reducing the total Aβ content and the number of amyloid plaques. Method In this study, we screened a small library and found that a flavonoid compound (ZGM1) promoted the aggregation of β-amyloid (Aβ). We further verified the binding of ZGM1 to Aβ42 using a microscale thermophoresis (MST) assay. Subsequently, we used dot blotting (DB), transmission electron microscopy (TEM), and thioflavin T fluorescence (ThT) measurements to study the aggregation of Aβ under the influence of ZGM1. By using cell experiments, we determined whether ZGM1 can inhibit the cytotoxicity of Aβ. Finally, we studied the protective effects of ZGM1 on cognitive function in APPswe/PS1 mice via behavioral experiments and measured the number of plaques in the mouse brain by thioflavin staining. Results ZGM1 can bind with Aβ directly and mediate a new Aβ assembly process to form reticular aggregates and reduce the amount of Aβ oligomers. Animal experiments showed that ZGM1 can significantly improve cognitive dysfunction and that Aβ plaque deposition in the brain tissue of mice in the drug-administered group was significantly increased. Conclusion Our research suggests that promoting Aβ aggregation is a promising treatment method for AD and deserves further investigation.


2020 ◽  
Vol 77 (2) ◽  
pp. 807-819
Author(s):  
Yan-Juan Wang ◽  
Wei-Gang Gong ◽  
Qing-Guo Ren ◽  
Zhi-Jun Zhang

Background: The inhibition of tau hyperphosphorylation is one of the most promising therapeutic targets for the development of Alzheimer’s disease (AD) modifying drugs. Escitalopram, a kind of selective serotonin reuptake inhibitor antidepressant, has been previously reported to ameliorate tau hyperphosphorylation in vitro. Objective: In this study, we determined whether escitalopram alleviates tau pathologies in the aged P301L mouse. Methods: Mice were intraperitoneal injected with either escitalopram or saline for 4 weeks, and a battery of behavioral tests were conducted before tissue collection and biochemical analyses of brain tissue with western blot and immunohistochemistry. Results: Wild-type (Wt) mice statistically outperformed the aged pR5 mice in the Morris water maze, while escitalopram treatment did not significantly rescue learning and memory deficits of aged pR5 mice. Tau phosphorylation at different phosphorylation sites were enhanced in the hippocampus of aged pR5 mice, while escitalopram treatment significantly decreased tau phosphorylation. The levels of phosphorylated GSK-3β and phosphorylated Akt were significantly decreased in the hippocampus of aged pR5 mice, while escitalopram administration markedly increased the expression level. The aged pR5 mice showed significant decreases in PSD95 and PSD93, while the administration of escitalopram significantly increased PSD95 and PSD93 to levels comparable with the Wt mice. Conclusion: The protective effects of escitalopram exposure during advanced AD are mainly associated with significant decrease in tau hyperphosphorylation, increased numbers of neurons, and increased synaptic protein levels, which may via activation of the Akt/GSK-3β signaling pathway.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Dan Wang ◽  
Zhifu Fei ◽  
Song Luo ◽  
Hai Wang

Objectives: Alzheimer's disease (AD), also known as senile dementia, is a common neurodegenerative disease characterized by progressive cognitive impairment and personality changes. Numerous evidences have suggested that microRNAs (miRNAs) are involved in the pathogenesis and development of AD. However, the exact role of miR-335-5p in the progression of AD is still not clearly clarified. Methods: The protein and mRNA levels were measured by western blot and RNA extraction and quantitative real-time PCR (qRT-PCR), respectively. The relationship between miR-335-5p and c-jun-N-terminal kinase 3 (JNK3) was confirmed by dual-luciferase reporter assay. SH-SY5Y cells were transfected with APP mutant gene to establish the in vitro AD cell model. Flow cytometry and western blot were performed to evaluate cell apoptosis. The APP/PS1 transgenic mice were used as an in vivo AD model. Morris water maze test was performed to assess the effect of miR- 335-5p on the cognitive deficits in APP/PS1 transgenic mice. Results: The JNK3 mRNA expression and protein levels of JNK3 and β-Amyloid (Aβ) were significantly up-regulated, and the mRNA expression of miR-335-5p was down-regulated in the brain tissues of AD patients. The expression levels of miR-335-5p and JNK3 were significantly inversely correlated. Further, the dual Luciferase assay verified the relationship between miR-335- 5p and JNK3. Overexpression of miR-335-5p significantly decreased the protein levels of JNK3 and Aβ and inhibited apoptosis in SH-SY5Y/APPswe cells, whereas the inhibition of miR-335-5p obtained the opposite results. Moreover, the overexpression of miR-335-5p remarkably improved the cognitive abilities of APP/PS1 mice. Conclusion: The results revealed that the increased JNK3 expression, negatively regulated by miR-335-5p, may be a potential mechanism that contributes to Aβ accumulation and AD progression, indicating a novel approach for AD treatment.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Jing Ma ◽  
Yuan Gao ◽  
Wei Tang ◽  
Wei Huang ◽  
Yong Tang

Background: Studies have suggested that cognitive impairment in Alzheimer’s disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice. Objective: In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice. Results: It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus. Conclusion: These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


2020 ◽  
Vol 20 (13) ◽  
pp. 1214-1234 ◽  
Author(s):  
Md. Tanvir Kabir ◽  
Md. Sahab Uddin ◽  
Bijo Mathew ◽  
Pankoj Kumar Das ◽  
Asma Perveen ◽  
...  

Background: Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. Objective: In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. Summary: Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine’s immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. Conclusion: Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Sirui Guo ◽  
Jiahong Wang ◽  
Huarong Xu ◽  
Weiwei Rong ◽  
Cheng Gao ◽  
...  

Alzheimer’s disease (AD) is a widespread neurodegenerative disease caused by complicated disease-causing factors. Unsatisfactorily, curative effects of approved anti-AD drugs were not good enough due to their actions on single-target, which led to desperate requirements for more effective drug therapies involved in multiple pathomechanisms of AD. The anti-AD effect with multiple action targets of Kai-Xin-San (KXS), a classic prescription initially recorded in Bei Ji Qian Jin Yao Fang and applied in the treatment of dementia for thousands of years, was deciphered with modern biological methods in our study. Aβ25-35 and D-gal-induced AD rats and Aβ25-35-induced PC12 cells were applied to establish AD models. KXS could significantly improve cognition impairment by decreasing neurotransmitter loss and enhancing the expression of PI3K/Akt. For the first time, KXS was confirmed to improve the expression of PI3K/Akt by neurotransmitter 5-HT. Thereinto, PI3K/Akt could further inhibit Tau hyperphosphorylation as well as the apoptosis induced by oxidative stress and neuroinflammation. Moreover, all above-mentioned effects were verified and blocked by PI3K inhibitor, LY294002, in Aβ25-35-induced PC12 cells, suggesting the precise regulative role of KXS in the PI3K/Akt pathway. The utilization and mechanism elaboration of KXS have been proposed and dissected in the combination of animal, molecular, and protein strategies. Our results demonstrated that KXS could ameliorate AD by regulating neurotransmitter and PI3K/Akt signal pathway as an effective multitarget treatment so that the potential value of this classic prescription could be explored from a novel perspective.


Author(s):  
Vega García-Escudero ◽  
Daniel Ruiz-Gabarre ◽  
Ricardo Gargini ◽  
Mar Pérez ◽  
Esther García ◽  
...  

AbstractTauopathies, including Alzheimer’s disease (AD) and frontotemporal lobar degeneration with Tau pathology (FTLD-tau), are a group of neurodegenerative disorders characterized by Tau hyperphosphorylation. Post-translational modifications of Tau such as phosphorylation and truncation have been demonstrated to be an essential step in the molecular pathogenesis of these tauopathies. In this work, we demonstrate the existence of a new, human-specific truncated form of Tau generated by intron 12 retention in human neuroblastoma cells and, to a higher extent, in human RNA brain samples, using qPCR and further confirming the results on a larger database of human RNA-seq samples. Diminished protein levels of this new Tau isoform are found by Westernblotting in Alzheimer’s patients’ brains (Braak I n = 3; Braak II n = 6, Braak III n = 3, Braak IV n = 1, and Braak V n = 10, Braak VI n = 8) with respect to non-demented control subjects (n = 9), suggesting that the lack of this truncated isoform may play an important role in the pathology. This new Tau isoform exhibits similar post-transcriptional modifications by phosphorylation and affinity for microtubule binding, but more interestingly, is less prone to aggregate than other Tau isoforms. Finally, we present evidence suggesting this new Tau isoform could be linked to the inhibition of GSK3β, which would mediate intron 12 retention by modulating the serine/arginine rich splicing factor 2 (SRSF2). Our results show the existence of an important new isoform of Tau and suggest that further research on this less aggregation-prone Tau may help to develop future therapies for Alzheimer’s disease and other tauopathies.


Sign in / Sign up

Export Citation Format

Share Document