scholarly journals Computer-aided pancreas segmentation based on 3D GRE Dixon MRI: a feasibility study

2019 ◽  
Vol 8 (3) ◽  
pp. 205846011983469 ◽  
Author(s):  
Xiaoliang Gong ◽  
Chao Ma ◽  
Panpan Yang ◽  
Yufei Chen ◽  
Chaolin Du ◽  
...  

Background Pancreas segmentation is of great significance for pancreatic cancer radiotherapy positioning, pancreatic structure, and function evaluation. Purpose To investigate the feasibility of computer-aided pancreas segmentation based on optimized three-dimensional (3D) Dixon magnetic resonance imaging (MRI). Material and Methods Seventeen healthy volunteers (13 men, 4 women; mean age = 53.4 ± 13.2 years; age range = 28–76 years) underwent routine and optimized 3D gradient echo (GRE) Dixon MRI at 3.0 T. The computer-aided segmentation of the pancreas was executed by the Medical Imaging Interaction ToolKit (MITK) with the traditional segmentation algorithm pipeline (a threshold method and a morphological method) on the opposed-phase and water images of Dixon. The performances of our proposed computer segmentation method were evaluated by Dice coefficients and two-dimensional (2D)/3D visualization figures, which were compared for the opposed-phase and water images of routine and optimized Dixon sequences. Results The dice coefficients of the computer-aided pancreas segmentation were 0.633 ± 0.080 and 0.716 ± 0.033 for opposed-phase and water images of routine Dixon MRI, respectively, while they were 0.415 ± 0.143 and 0.779 ± 0.048 for the optimized Dixon MRI, respectively. The Dice index was significantly higher based on the water images of optimized Dixon than those in the other three groups (all P values < 0.001), including water images of routine Dixon MRI and both of the opposed-phase images of routine and optimized Dixon sequences. Conclusion Computer-aided pancreas segmentation based on Dixon MRI is feasible. The water images of optimized Dixon obtained the best similarity with a good stability.

2015 ◽  
Vol 741 ◽  
pp. 248-253
Author(s):  
Gong Yin Luo ◽  
Kang Ling Guan ◽  
De Yong Liao ◽  
Shan Yang ◽  
Yu Lin Zhuang

This paper introduces the communication room modeling and data display method based on 3D visualization technology, proposes the overall architecture and function architecture of the Three Dimensional Visualization communication room, and depicts the panoramic display of 3D computer operation monitoring from four aspects such as 3D monitoring visualization, 3D assets visualization, 3D wiring visualization and 3D statistical visualization.


Author(s):  
Bikem Soygur ◽  
Diana J. Laird

The ovary is an indispensable unit of female reproduction and health. However, the study of ovarian function in mammals is hindered by unique challenges, which include the desynchronized development of oocytes, irregular distribution and vast size discrepancy of follicles, and dynamic tissue remodeling during each hormonal cycle. Overcoming the limitations of traditional histology, recent advances in optical tissue clearing and three-dimensional (3D) visualization offer an advanced platform to explore the architecture of intact organs at a single cell level and reveal new relationships and levels of organization. Here we summarize the development and function of ovarian compartments that have been delineated by conventional two-dimensional (2D) methods and the limits of what can be learned by these approaches. We compare types of optical tissue clearing, 3D analysis technologies, and their application to the mammalian ovary. We discuss how 3D modeling of the ovary has extended our knowledge and propose future directions to unravel ovarian structure toward therapeutic applications for ovarian disease and extending female reproductive lifespan.


2016 ◽  
Vol 64 (4) ◽  
pp. 442-446
Author(s):  
Ana Waleska Pessoa BARROS ◽  
Érika PORTO ◽  
Jefferson Felipe Silva de LIMA ◽  
Nadja Maria da Silva Oliveira BRITO ◽  
Renata de Souza Coelho SOARES

ABSTRACT The use of rapid prototyping in medical and dental fields consists of three-dimensional models using Computer Aided Design systems and Computer Aided Manufacturing systems. Such systems focus specifically on enhanced 3D visualization tools that provide a precise preoperative planning opportunity through three-dimensional printing, to the professional. The objective of this study was to describe the main steps in the biomodel manufacturing using an Objet 3D printer (CONNEX 350), whose raw material is a light-curing resin. The steps are adopted by researchers from three-dimensional technologies laboratory (LT3D), of the Center for Strategic Technologies in Health (NUTES), from the State University of Paraíba (UEPB), Brazil. It begins with the acquisition of tomographic images that are processed through specific software and exported to the digital Stereo lithography (STL) format. The additive manufacturing technique is Stereo lithography, which consists in the construction of biomodel by photopolymerization of a liquid epoxy resin using ultraviolet radiation. The biomodel that comes from this process was brought to a pressurizing machine to remove the resin support, washing it with water jets. After this step, this biomodel was sent to the health professional in charge. The use of biomodels constitutes a major breakthrough in the area of Dentistry, allowing more precise diagnosis by professionals, simulation and surgical planning, previous adaptation of biomaterials and orthoses, as well as interaction between the surgeon and the patient, thus obtaining more satisfactory aesthetic results and decreased surgical time.


2021 ◽  
Vol 12 (1) ◽  
pp. 115-132
Author(s):  
Seyed Amir Hossein Batouli ◽  
◽  
Minoo Sisakhti ◽  
Shirin Haghshenas ◽  
Hamed Dehghani ◽  
...  

Introduction: The Iranian Brain Imaging Database (IBID) was initiated in 2017, with 5 major goals: provide researchers easy access to a neuroimaging database, provide normative quantitative measures of the brain for clinical research purposes, study the aging profile of the brain, examine the association of brain structure and function, and join the ENIGMA consortium. Many prestigious databases with similar goals are available. However, they were not done on an Iranian population, and the battery of their tests (e.g. cognitive tests) is selected based on their specific questions and needs. Methods: The IBID will include 300 participants (50% female) in the age range of 20 to 70 years old, with an equal number of participants (#60) in each age decade. It comprises a battery of cognitive, lifestyle, medical, and mental health tests, in addition to several Magnetic Resonance Imaging (MRI) protocols. Each participant completes the assessments on two referral days. Results: The study currently has a cross-sectional design, but longitudinal assessments are considered for the future phases of the study. Here, details of the methodology and the initial results of assessing the first 152 participants of the study are provided. Conclusion: IBID is established to enable research into human brain function, to aid clinicians in disease diagnosis research, and also to unite the Iranian researchers with interests in the brain.


2001 ◽  
Vol 1 (2) ◽  
pp. 186-192 ◽  
Author(s):  
Lisa Anthony ◽  
William C. Regli ◽  
Jon E. John ◽  
Santiago V. Lombeyda

This paper presents an approach to computer-aided design (CAD) that unites ideas from design with three-dimensional layouts and knowledge engineering. Our goal is to capture the structure, behavior, and function of CAD artifacts. We describe a software tool based on this approach, the conceptual understanding and prototyping (CUP) environment, for capturing the design intent inherent in the design process and authoring design semantics in previously created artifacts. CUP records design ideas, based on functional, geometric, and knowledge-based relationships among components in an electromechanical assembly. This design knowledge is stored using ontologies defined in the XML. The goal of this work is to enable users to navigate intricate product data and design knowledge bases.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
M. Boublik ◽  
N. Robakis ◽  
J.S. Wall

The three-dimensional structure and function of biological supramolecular complexes are, in general, determined and stabilized by conformation and interactions of their macromolecular components. In the case of ribosomes, it has been suggested that one of the functions of ribosomal RNAs is to act as a scaffold maintaining the shape of the ribosomal subunits. In order to investigate this question, we have conducted a comparative TEM and STEM study of the structure of the small 30S subunit of E. coli and its 16S RNA.The conventional electron microscopic imaging of nucleic acids is performed by spreading them in the presence of protein or detergent; the particles are contrasted by electron dense solution (uranyl acetate) or by shadowing with metal (tungsten). By using the STEM on freeze-dried specimens we have avoided the shearing forces of the spreading, and minimized both the collapse of rRNA due to air drying and the loss of resolution due to staining or shadowing. Figure 1, is a conventional (TEM) electron micrograph of 30S E. coli subunits contrasted with uranyl acetate.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Sign in / Sign up

Export Citation Format

Share Document