scholarly journals A Little AXER ABC: ATP, BiP, and Calcium Form a Triumvirate Orchestrating Energy Homeostasis of the Endoplasmic Reticulum

Contact ◽  
2020 ◽  
Vol 3 ◽  
pp. 251525642092679
Author(s):  
Richard Zimmermann ◽  
Sven Lang

Pioneering work in the 1990s started to address an interesting question. How is the main cellular energy source, adenosine triphosphate (ATP), imported into the mammalian endoplasmic reticulum (ER)? Despite its high-energy demand, large volume, and structural as well as functional complexity, the ER harbors no intricate system for ATP synthesis or regeneration. Although the original biochemical reconstitution approaches established hallmarks of the ATP transport into the ER including nucleotide selectivity, affinity, and antiport mode, the more recent live-cell imaging methods employing sensitive, localized molecular probes identified the elusive ATP/adenosine diphosphate (ADP) exchanger. According to its selectivity and localization, the identified SLC35B1 protein was rebranded AXER. Here, we discuss the identification and regulation of AXER plus the cytosolic partners (AMP-activated protein kinase, AMPK) and subcellular structures (mitochondrial–ER contact sites, MERCs) acting in concert with it to orchestrate energy homeostasis of the mammalian ER. Furthermore, we combine the two seemingly controversial regulatory mechanisms (lowER and CaATiER) in a unifying hypothesis.

2014 ◽  
Vol 67 (9) ◽  
pp. 758-763 ◽  
Author(s):  
Sukriti Krishan ◽  
Des R Richardson ◽  
Sumit Sahni

The PRKAA1 gene encodes the catalytic α-subunit of 5′ AMP-activated protein kinase (AMPK). AMPK is a cellular energy sensor that maintains energy homeostasis within the cell and is activated when the AMP/ATP ratio increases. When activated, AMPK increases catabolic processes that increase ATP synthesis and inhibit anabolic processes that require ATP. Additionally, AMPK also plays a role in activating autophagy and inhibiting energy consuming processes, such as cellular growth and proliferation. Due to its role in energy metabolism, it could act as a potential target of many therapeutic drugs that could be useful in the treatment of several diseases, for example, diabetes. Moreover, AMPK has been shown to be involved in inhibiting tumour growth and metastasis, and has also been implicated in the pathology of neurodegenerative and cardiac disorders. Hence, a better understanding of AMPK and its role in various pathological conditions could enable the development of strategies to use it as a therapeutic target.


2006 ◽  
Vol 203 (7) ◽  
pp. 1665-1670 ◽  
Author(s):  
Peter Tamás ◽  
Simon A. Hawley ◽  
Rosemary G. Clarke ◽  
Kirsty J. Mustard ◽  
Kevin Green ◽  
...  

The adenosine monophosphate (AMP)–activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKα1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca2+ with Ca2+ ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca2+ stimulation of AMPK required the activity of Ca2+–calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca2+ signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it.


2005 ◽  
Vol 289 (1) ◽  
pp. H37-H47 ◽  
Author(s):  
Malgorzata Tokarska-Schlattner ◽  
Michael Zaugg ◽  
Rafaela da Silva ◽  
Eliana Lucchinetti ◽  
Marcus C. Schaub ◽  
...  

Doxorubicin (DXR) is a widely used and efficient anticancer drug. However, its application is limited by the risk of severe cardiotoxicity. Impairment of cardiac high-energy phosphate homeostasis is an important manifestation of both acute and chronic DXR cardiotoxic action. Using the Langendorff model of the perfused rat heart, we characterized the acute effects of 1-h perfusion with 2 or 20 μM DXR on two key kinases in cardiac energy metabolism, creatine kinase (CK) and AMP-activated protein kinase (AMPK), and related them to functional responses of the perfused heart and structural integrity of the contractile apparatus as well as drug accumulation in cardiomyocytes. DXR-induced changes in CK were dependent on the isoenzyme, with a shift in protein levels of cytosolic isoenzymes from muscle-type CK to brain-type CK, and a destabilization of octamers of the mitochondrial isoenzyme (sarcometric mitochondiral CK) accompanied by drug accumulation in mitochondria. Interestingly, DXR rapidly reduced the protein level and phosphorylation of AMPK as well as phosphorylation of its target, acetyl-CoA-carboxylase. AMPK was strongly affected already at 2 μM DXR, even before substantial cardiac dysfunction occurred. Impairment of CK isoenzymes was mostly moderate but became significant at 20 μM DXR. Only at 2 μM DXR did upregulation of brain-type CK compensate for inactivation of other isoenzymes. These results suggest that an impairment of kinase systems regulating cellular energy homeostasis is involved in the development of DXR cardiotoxicity.


Author(s):  
Michael J. Rudolph ◽  
Gabriele A. Amodeo ◽  
Liang Tong

AMP-activated protein kinase (AMPK) is a master metabolic regulator for controlling cellular energy homeostasis. Its homolog in yeast, SNF1, is activated in response to glucose depletion and other stresses. The catalytic (α) subunit of AMPK/SNF1 in yeast (Snf1) contains a protein Ser/Thr kinase domain (KD), an auto-inhibitory domain (AID) and a region that mediates interactions with the two regulatory (β and γ) subunits. Here, the crystal structure of residues 41–440 of Snf1, which include the KD and AID, is reported at 2.4 Å resolution. The AID is completely disordered in the crystal. A new inhibited conformation of the KD is observed in a DFG-out conformation and with the glycine-rich loop adopting a structure that blocks ATP binding to the active site.


Author(s):  
Malgorzata Tokarska-Schlattner ◽  
Laurence Kay ◽  
Pascale Perret ◽  
Raffaella Isola ◽  
Stéphane Attia ◽  
...  

AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis under conditions of energy stress. Though heart is one of the most energy requiring organs and depends on a perfect match of energy supply with high and fluctuating energy demand to maintain its contractile performance, the role of AMPK in this organ is still not entirely clear, in particular in a non-pathological setting. In this work, we characterized cardiomyocyte-specific, inducible AMPKα1 and α2 knockout mice (KO), where KO was induced at the age of 8 weeks, and assessed their phenotype under physiological conditions. In the heart of KO mice, both AMPKα isoforms were strongly reduced and thus deleted in a large part of cardiomyocytes already 2 weeks after tamoxifen administration, persisting during the entire study period. AMPK KO had no effect on heart function at baseline, but alterations were observed under increased workload induced by dobutamine stress, consistent with lower endurance exercise capacity observed in AMPK KO mice. AMPKα deletion also induced a decrease in basal metabolic rate (oxygen uptake, energy expenditure) together with a trend to lower locomotor activity of AMPK KO mice 12 months after tamoxifen administration. Loss of AMPK resulted in multiple alterations of cardiac mitochondria: reduced respiration with complex I substrates as measured in isolated mitochondria, reduced activity of complexes I and IV, and a shift in mitochondrial cristae morphology from lamellar to mixed lamellar-tubular. A strong tendency to diminished ATP and glycogen level was observed in older animals, 1 year after tamoxifen administration. Our study suggests important roles of cardiac AMPK at increased cardiac workload, potentially limiting exercise performance. This is at least partially due to impaired mitochondrial function and bioenergetics which degrades with age.


2018 ◽  
Vol 15 (138) ◽  
pp. 20170774 ◽  
Author(s):  
D. Grahame Hardie

Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched off, thus restoring energy homeostasis. Drugs that modulate AMPK have great potential in the treatment of metabolic disorders such as obesity and Type 2 diabetes, and even cancer. Indeed, some existing drugs such as metformin and aspirin, which were derived from traditional herbal remedies, appear to work, in part, by activating AMPK.


2012 ◽  
Vol 23 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Rob U. Onyenwoke ◽  
Lawrence J. Forsberg ◽  
Lucy Liu ◽  
Tyisha Williams ◽  
Oscar Alzate ◽  
...  

AMP-activated protein kinase (AMPK) is a key energy sensor that regulates metabolism to maintain cellular energy balance. AMPK activation has also been proposed to mimic benefits of caloric restriction and exercise. Therefore, identifying downstream AMPK targets could elucidate new mechanisms for maintaining cellular energy homeostasis. We identified the phosphotransferase nucleoside diphosphate kinase (NDPK), which maintains pools of nucleotides, as a direct AMPK target through the use of two-dimensional differential in-gel electrophoresis. Furthermore, we mapped the AMPK/NDPK phosphorylation site (serine 120) as a functionally potent enzymatic “off switch” both in vivo and in vitro. Because ATP is usually the most abundant cellular nucleotide, NDPK would normally consume ATP, whereas AMPK would inhibit NDPK to conserve energy. It is intriguing that serine 120 is mutated in advanced neuroblastoma, which suggests a mechanism by which NDPK in neuroblastoma can no longer be inhibited by AMPK-mediated phosphorylation. This novel placement of AMPK upstream and directly regulating NDPK activity has widespread implications for cellular energy/nucleotide balance, and we demonstrate in vivo that increased NDPK activity leads to susceptibility to energy deprivation–induced death.


2016 ◽  
Vol 44 (6) ◽  
pp. 1717-1724 ◽  
Author(s):  
Yi Zhang ◽  
Hong Xu

Mitochondria are generated by the expression of genes on both nuclear and mitochondrial genome. Mitochondrial biogenesis is highly plastic in response to cellular energy demand, developmental signals and environmental stimuli. Mechanistic target of rapamycin (mTOR) pathway regulates mitochondrial biogenesis to co-ordinate energy homeostasis with cell growth. The local translation of mitochondrial proteins on the outer membrane facilitates their efficient import and thereby allows prodigious mitochondrial biogenesis during rapid cell growth and proliferation. We postulate that the local translation may also allow cells to promote mitochondrial biogenesis selectively based on the fitness of individual organelle. MDI–Larp complex promotes the biogenesis of healthy mitochondria and thereby is essential for the selective transmission of healthy mitochondria. On the other hand, PTEN-induced putative kinase 1 (PINK1)–Pakin activates protein synthesis on damaged mitochondria to maintain the organelle homeostasis and activity. We also summarize some recent progress on miRNAs' regulation on mitochondrial biogenesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259636
Author(s):  
Raul Covian ◽  
Lanelle Edwards ◽  
Yi He ◽  
Geumsoo Kim ◽  
Carly Houghton ◽  
...  

Paracoccus denitrificans is a model organism for the study of oxidative phosphorylation. We demonstrate a very high respiratory capacity compared to mitochondria when normalizing to cytochrome aa3 content even in the absence of alternative terminal oxidases. To gain insight into conserved mechanisms of energy homeostasis, we characterized the metabolic response to K+ reintroduction. A rapid 3-4-fold increase in respiration occurred before substantial cellular K+ accumulation followed by a sustained increase of up to 6-fold that persisted after net K+ uptake stopped. Proton motive force (Δp) was slightly higher upon addition of K+ with ΔpH increasing and compensating for membrane potential (ΔΨ) depolarization. Blocking the F0F1-ATP synthase (Complex V) with venturicidin revealed that the initial K+-dependent respiratory activation was primarily due to K+ influx. However, the ability to sustain an increased respiration rate was partially dependent on Complex V activity. The 6-fold stimulation of respiration by K+ resulted in a small net reduction of most cytochromes, different from the pattern observed with chemical uncoupling and consistent with balanced input and utilization of reducing equivalents. Metabolomics showed increases in glycolytic and TCA cycle intermediates together with a decrease in basic amino acids, suggesting an increased nitrogen mobilization upon K+ replenishment. ATP and GTP concentrations increased after K+ addition, indicating a net increase in cellular potential energy. Thus, K+ stimulates energy generation and utilization resulting in an almost constant Δp and increased high-energy phosphates during large acute and steady state changes in respiration. The specific energy consuming processes and signaling events associated with this simultaneous activation of work and metabolism in P. denitrificans remain unknown. Nevertheless, this homeostatic behavior is very similar to that observed in mitochondria in tissues when cellular energy requirements increase. We conclude that the regulation of energy generation and utilization to maintain homeostasis is conserved across the prokaryote/eukaryote boundary.


Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


Sign in / Sign up

Export Citation Format

Share Document