Structural properties and electrical resistivity of TiNxand Ti1−xAlxN films prepared by reactive dc magnetron sputtering: effect of nitrogen flowrate

2008 ◽  
Vol 24 (1) ◽  
pp. 28-35 ◽  
Author(s):  
A. A. Irudayaraj ◽  
P. Kuppusami ◽  
S. Kalainathan
1994 ◽  
Vol 360 ◽  
Author(s):  
G.R. Fox ◽  
D. Damjanovic ◽  
P.A. Danai ◽  
N. Setter ◽  
H.G. Limberger ◽  
...  

AbstractAxially symmetric coatings of ZnO and PZT have been deposited onto fiber substrates by reactive dc magnetron sputtering. Multi-layer Cr/Au/ZnO/Cr/Au coating structures on optical fibers have been used to make integrated phase modulator devices. An analysis of the structural properties and piezoelectric response of the phase modulator devices will be presented. Microtubes of ZnO and Pt/ZnO/Pt multi-layers have been prepared by coating polyester fibers that act as a fugitive phase. After burning away the polyester fiber, up to 3 cm long micro-tubes with a 23 μm inside diameter and 3 to 9 μm wall thickness were obtained.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Fridrik Magnus ◽  
Arni Sigurdur Ingason ◽  
Sveinn Olafsson ◽  
Jon Tomas Gudmundsson

AbstractUltrathin TiN films were grown by reactive dc magnetron sputtering on amorphous SiO2 substrates and single-crystalline MgO substrates at 600°C. The resistance of the films was monitored in-situ during growth to determine the coalescence and continuity thicknesses. TiN films grown on SiO2 are polycrystalline and have coalescence and continuity thicknesses of 8 Å and 19 Å, respectively. TiN films grow epitaxially on the MgO substrates and the coalescence thickness is 2 Å and the thickness where the film becomes continuous cannot be resolved from the coalescence thickness. X-ray reflection measurements indicate a significantly higher density and lower roughness of the epitaxial TiN films.


2018 ◽  
Vol 455 ◽  
pp. 267-275 ◽  
Author(s):  
Davide Casotti ◽  
Valentina Orsini ◽  
Alessandro di Bona ◽  
Sandra Gardonio ◽  
Mattia Fanetti ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 253 ◽  
Author(s):  
Wei-Chun Chen ◽  
Chao-Te Lee ◽  
James Su ◽  
Hung-Pin Chen

Zirconium diboride (ZrB2) thin films were deposited on a Si(100) substrate using pulsed direct current (dc) magnetron sputtering and then annealed in high vacuum. In addition, we discussed the effects of the vacuum annealing temperature in the range of 750 to 870 °C with flowing N2 on the physical properties of ZrB2 films. The structural properties of ZrB2 films were investigated with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns indicated that the ZrB2 films annealed at various temperatures exhibited a highly preferred orientation along the [0001] direction and that the residual stress could be relaxed by increasing the annealing temperature at 870 °C in a vacuum. The surface morphology was smooth, and the surface roughness slightly decreased with increasing annealing temperature. Cross-sectional TEM images of the ZrB2/Si(100) film annealed at 870 °C reveals the films were highly oriented in the direction of the c-axis of the Si substrate and the film structure was nearly stoichiometric in composition. The XPS results show the film surfaces slightly contain oxygen, which corresponds to the binding energy of Zr–O. Therefore, the obtained ZrB2 film seems to be quite suitable as a buffer layer for III-nitride growth.


2017 ◽  
Vol 35 (1) ◽  
pp. 173-180 ◽  
Author(s):  
A. Kavitha ◽  
R. Kannan ◽  
S. Rajashabala

AbstractThe present paper describes the effect of target power on the properties of Ti thin films prepared by DC magnetron sputtering with (triode mode) and without (diode mode) supported discharge. The traditional diode magnetron sputtering with an addition of a hot filament has been used to sustain the discharge at a lower pressure. The effect of target power (60, 80, 100 and 120 W) on the physical properties of Ti thin films has been studied in diode and triode modes. XRD studies showed that the Ti thin films prepared at a target power up to 100 W in diode mode were amorphous in nature. The Ti thin films exhibited crystalline structure at much lower target power of 80 W with a preferred orientation along (0 0 2) plane. The grain size of Ti thin films prepared in triode mode increased from 64 nm to 80 nm, whereas in diode mode, the grain size increased from 2 nm to 5 nm. EDAX analysis confirmed that the incorporation of reactive gases was lower in triode mode compared to diode mode. The electrical resistivity of Ti thin films deposited in diode mode was found to be 85 µΩ⋅cm (target power 120 W). The electrical resistivity of Ti thin films in triode mode was found to be deceased to 15.2 µΩ⋅cm (target power 120 W).


2010 ◽  
Vol 663-665 ◽  
pp. 572-575 ◽  
Author(s):  
Han Fa Liu ◽  
Hua Fu Zhang ◽  
Ai Ping Zhou

Ti-Ga co-doped ZnO thin films (TGZO) have been successfully prepared on glass substrates by DC magnetron sputtering at room temperature. The X-ray diffraction (XRD) patterns show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The distance between target and substrate was varied from 41 to 75 mm. The crystallinity increases obviously and the electrical resistivity decreases when the distance between target and substrate decreases from 75 to 46 mm. However, as the distance decreases further, the electrical resistivity increases. It is obtained that the lowest resistivity is 2.0610-4cm when the distance between target and substrate is 46 mm. In the visible region, the TGZO films show a high average transmittance of above 90 %.


2010 ◽  
Vol 93-94 ◽  
pp. 578-582
Author(s):  
A. Pankiew ◽  
Win Bunjongpru ◽  
N. Somwang ◽  
S. Porntheeraphat ◽  
Sirapat Pratontep ◽  
...  

Titanium nitride (TiN) film has been widely used as a diffusion barrier layer for VLSI contact metallization because TiN is an excellent barrier against inter-diffusion between Al and Si substrate or silicide. In this work, we studied the properties of TiN films deposited by DC magnetron sputtering with varying N2:Ar flow rate ratio in order to optimize growth conditions and film properties provided for Al diffusion barrier purpose. The TiN films were deposited at the constant pressure level and sputtering time. The crystalline orientation, composition and electrical properties of deposited TiN films were characterized by XRD, AES-depth profile and Four Point Probe measurement, respectively. The XRD results show that the deposited TiN film has two preferred orientations of TiN(111) and TiN(200) planes. The highest intensity of the TiN(111) plane was obtained when the N2:Ar flow rate ratio was 3:1. The electrical resistivity was increased when the N2:Ar flow rate ratio was decreased. The minimum electrical resistivity is 127.8 μΩ-cm when the N2:Ar flow rate ratio is 3:1.


2008 ◽  
Vol 254 (22) ◽  
pp. 7356-7360 ◽  
Author(s):  
J.S. Agustsson ◽  
U.B. Arnalds ◽  
A.S. Ingason ◽  
K.B. Gylfason ◽  
K. Johnsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document