Evolution of pyrophyllite particle sizes during dry grinding

Clay Minerals ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 423-432 ◽  
Author(s):  
P. Uhlík ◽  
V. Šucha ◽  
D. D. Eberl ◽  
L'. Puškelová ◽  
M. Čaplovičová

AbstractThe Bertaut-Warren-Averbach (BWA) technique and high-resolution transmission electron microscopy (HRTEM) were used to characterize the products of dry-ground pyrophyllite. Mean crystallite thickness and crystallite thickness distributions were measured for each sample using the BWA technique. Mean crystallite thickness decreases during the treatment with respect to grinding time and energy applied per unit mass. The BWA data were checked by HRTEM measurements and good fits were obtained for samples having small mean particle thicknesses. Samples with thicker particles could not be measured properly by HRTEM because the number of particles counted from images is statistically insufficient. The shape of the crystallite and the particle-size distribution were used to determine the mechanism of pyrophyllite particle degradation. Particles initially having a lognormal size distribution are first delaminated randomly, then some are delaminated preferentially, thereby producing polymodal thickness distributions. Finally all particles undergo delamination yielding a lognormal thickness distribution.

2010 ◽  
Vol 56 (No. 4) ◽  
pp. 154-158 ◽  
Author(s):  
T. Vítěz ◽  
P. Trávníček

Particle size distribution of the sample of waste sawdust and wood shavings mixtures were made with two commonly used methods of mathematical models by Rosin-Rammler (RR model) and by Gates-Gaudin-Schuhmann (GGS model).On the basis of network analysis distribution function F (d) (mass fraction) and density function f (d) (number of particles captured between two screens) were obtained. Experimental data were evaluated using the RR model and GGS model, both models were compared. Better results were achieved with GGS model, which leads to a more accurate separation of the different particle sizes in order to obtain a better industrial profit of the material.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Ibrahim Bagudo Muh’d ◽  
Zainal A. Talib ◽  
Zulkarnain Zainal ◽  
Josephine Ying Chi Liew

We report the pinned absorbance and emission spectra of Cd0.3Zn0.7Se nanocrystals synthesized via mechanical alloying. The first emission peaks of Cd0.3Zn0.7Se nanocrystals milled for 5 and 10 h are observed at 3.36 eV, while the absorbance spectra of those milled for 10 and 20 h are observed at 4.47 eV. The emission peaks of nanocrystals milled for 5, 10, and 20 h have broad emissions centered at 2.90, 2.88, and 2.92 eV, respectively. Transmission electron microscopy histogram shows that each nanocrystal size distribution has a single population maxima of <2 nm. In addition, the center of each size distribution shifts toward the ultrasmall particles upon continuous milling. Particle sizes (d) of 0.73 nm are calculated from the first excitonic peaks of the pinned absorbance bands through the semiempirical sizing equation. The continuous reduction in particle sizes increases the surface-to-volume ratios of the nanocrystals. This increase eventually results in an increase in the surface states that translate into low photoluminescence intensity of pinned emission.


2006 ◽  
pp. 109-116 ◽  
Author(s):  
Vladimir Simic ◽  
Peter Uhlík

The BWA (Bertaut-Warren-Averbach) technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic), and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA) seams to be influenced by the genetic type of the clay sample.


Author(s):  
C. Stoeckert ◽  
B. Etherton ◽  
M. Beer ◽  
J. Gryder

The interpretation of the activity of catalysts requires information about the sizes of the metal particles, since this has implications for the number of surface atoms available for reaction. To determine the particle dimensions we used a high resolution STEM1. Such an instrument with its simple optical transfer function is far more suitable than a conventional transmission electron microscope for the establishment of particle sizes. We report here our study on the size and number distribution of Ir particles supported on Al2O3 and also examine simple geometric models for the shape of Ir particles.


Author(s):  
Ye Yang ◽  
Suiyang Liao ◽  
Zhi Luo ◽  
Runzhang Qi ◽  
Niamh Mac Fhionnlaoich ◽  
...  

Accurate nanoparticle (NP) size determination is essential across research domains, with many functions in nanoscience and biomedical research being size-dependent. Although transmission electron microscopy (TEM) is capable of resolving a single NP down to the sub-nm scale, the reliable representation of entire populations is plagued by challenges in providing statistical significance, predominantly due to limited sample counts, suboptimal preparation procedures and operator bias during image acquisition and analysis. Meanwhile alternative techniques exist, but reliable implementation requires a detailed understanding of appendant limitations. Herein, conventional TEM is compared to the size determination of sub-10 nm gold NPs in solution by small-angle X-ray scattering and analytical ultracentrifugation. Form-free Monte Carlo fitting of scattering profiles offers access to a direct representation of the core size distribution while ultracentrifugation sedimentation velocity analysis provides information of the hydrodynamic size distribution. We report a comparison of these three methods in determining the size of quasi-monodisperse, polydisperse and bimodal gold nanoparticles of 2 – 7 nm and discuss advantages and limitations of each technique.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1003
Author(s):  
Pantharee Kongsat ◽  
Sakprayut Sinthupinyo ◽  
Edgar A. O’Rear ◽  
Thirawudh Pongprayoon

Several types of hematite nanoparticles (α-Fe2O3) have been investigated for their effects on the structure and properties of fly ash (FA) blended cement. All synthesized nanoparticles were found to be of spherical shape, but of different particle sizes ranging from 10 to 195 nm depending on the surfactant used in their preparation. The cement hydration with time showed 1.0% α-Fe2O3 nanoparticles are effective accelerators for FA blended cement. Moreover, adding α-Fe2O3 nanoparticles in FA blended cement enhanced the compressive strength and workability of cement. Nanoparticle size and size distribution were important for optimal filling of various size of pores within the cement structure.


2017 ◽  
Vol 62 (2) ◽  
pp. 1389-1392
Author(s):  
J.G. Jang ◽  
J.-O. Lee ◽  
C.K. Lee

AbstractRapid synthesis of gold nanoparticles (AuNPs) by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonyl)imide ([EMIM]TFSI) with gold trichloride (AuCl3). To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl) was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.


2010 ◽  
Vol 09 (05) ◽  
pp. 399-406 ◽  
Author(s):  
A. A. EL-DALY

In this paper, we report a convenient and informative procedure for detecting the morphology and surface structure of individual gold nanocrystals using digital Crystal Image Software (CIS) processing of transmission electron microscopy (TEM) image, which comprises coalescence phenomena of these nanoparticles. The results show that the internal structure of Au nanoparticles has a core of gold atoms arranged as a Marks decahedron, surrounded by additional gold–organic compound layers forming a rigid surface layer, and its outer layer comprises four staple motif bridge molecules that resemble handles, formed an unusual pattern. The obtained results improved our understanding of the basics of the coalescence phenomena such as the driving mechanisms acting at different particle sizes. However, these discrete natures of the nanoparticles will assist in the understanding of principles of nanocore assembly and opens a new window for nanoparticles chemistry.


Sign in / Sign up

Export Citation Format

Share Document