XRF and nitrogen adsorption studies of acid-activated palygorskite

Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Junping Zhang ◽  
Qin Wang ◽  
Hao Chen ◽  
Aiqin Wang

AbstractThe effects of acid activation on the chemical composition, surface area and pore structure of palygorskite from Xuyi (Jiangsu, P.R. China) were investigated systematically using X-ray fluorescence (XRF) and BET techniques. The palygorskite samples were activated with HCl, H2SO4 and H3PO4 of various concentrations at 80ºC for 4 h. The influences of acid concentration and acid type on the chemical composition, adsorption-desorption isotherms at 77 K, pore-size distribution, surface area and pore volume were studied in detail. The contents of most components of palygorskite decrease with increasing acid concentration except for Si and Ti. HCl shows a greater activation activity and its effect on the dissolution of components of palygorskite is greater than that of H2SO4 and H3PO4. It was found that 3 mol l–1 H3PO4 is a more efficient activator for increasing the number of micropores in palygorskite, whereas 12 mol l–1 HCl is more suitable for use in enhancing the number of meso- and macropores. The acid concentration and acid type have a great influence on the surface area and pore volume. HCl is the most effective at enhancing the external surface area and mesopore volume of palygorskite, whereas, H3PO4 is more suitable for use in improving the micropore surface and volume.

2005 ◽  
Vol 494 ◽  
pp. 339-344 ◽  
Author(s):  
Z. Vuković ◽  
A. Milutinović-Nikolić ◽  
J. Krstić ◽  
A. Abu-Rabi ◽  
T. Novaković ◽  
...  

The nanostructure and textural properties of acid-activated bentonite clays from the Bogovina coalmine were investigated. The acid activation was performed with HCl in the concentration range 1.5-7.5 M. The atomic force microscopy followed by image analysis was used in order to establish the influence of the acid treatment on the size of bentonite particles. Nitrogen adsorption-desorption isotherms at -196 °C were used to estimate the specific surface area, pore volume and pore size distribution. The acid treatment reduces the size of bentonite particles and increases the specific surface area and pore volume of the investigated bentonites. These effects are improved by increasing the acid concentration up to 4.5 M HCl. Further increase in acid concentration does not result in development of new porous structure.


2018 ◽  
Vol 4 (7) ◽  
Author(s):  
Altin Mele ◽  
Krenaida Taraj ◽  
Arjan Korpa

Prrenjas clay mineral is found in southeast Albania and has a high content on bentonite. Theinfluence of the sulphuric acid activation on the composition, structure and surface properties ofPrrenjas clay mineral is investigated in this study by means of elemental chemical analysis, X-RayDiffractometry, IR Spectroscopy and gas adsorption-desorption measurement. H2SO4concentrations of 0.143 M, 0.232 M, 0.371 M, 0.537 M, 0.734 M, 0.927 M and 1.456 M were used inthe treatment of samples. The treatment by increasing the acid concentration brings the leaching ofAl3+, Fe2+, Mg2+ from the clay structure. The specific surface area and the pore volume of the claysamples increases respectively from 83 m2/g and 0.069 cm3/g for the untreated clay to 420 m2/g and0.384 cm3/g for the clay mineral treated with 1.456 M H2SO4 solution. New mesopores were createdduring the acid activation mainly in the range of 2 – 8 nm. For the samples treated with 0.927 Mand 1.456 M solutions the increase in specific surface area and pore volume is very high. Thecationic exchange capacity decreases steadily with the concentration of H2SO4 used for thetreatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Seok Woo Chang

Chemical composition and porosity characteristics of calcium silicate-based endodontic cements are important determinants of their clinical performance. Therefore, the aim of this study was to investigate the chemical composition and porosity characteristics of various calcium silicate-based endodontic cements: MTA-angelus, Bioaggregate, Biodentine, Micromega MTA, Ortho MTA, and ProRoot MTA. The specific surface area, pore volume, and pore diameter were measured by the porosimetry analysis of N2 adsorption/desorption isotherms. Chemical composition and powder analysis by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) were also carried out on these endodontic cements. Biodentine and MTA-angelus showed the smallest pore volume and pore diameter, respectively. Specific surface area was the largest in MTA-angelus. SEM and EDS analysis showed that Bioaggregate and Biodentine contained homogenous, round and small particles, which did not contain bismuth oxide.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2014 ◽  
Vol 804 ◽  
pp. 149-152 ◽  
Author(s):  
Ji Sun Kim ◽  
Jae Ho Baek ◽  
Myung Hwan Kim ◽  
Seong Soo Hong ◽  
Man Sig Lee

In this study, we confirmed effect of carbon pre-treatment on Pd dispersion in synthesis of Pd/C catalyst. Physical characteristics on the surface of before and after pre-treated carbon were analyzed by nitrogen adsorption-desorption analysis. The dispersion and size of Pd particles were analyzed by XRD, FE-TEM and CO-chemisorption. After pre-treatment, surface area of carbon were decreased. And mesopore area ratio were increased with decreasing micropore area ratio. In the case of pre-treated carbon, we confirmed high dispersion of Pd particles.


2013 ◽  
Vol 284-287 ◽  
pp. 230-234
Author(s):  
Yu Jen Chou ◽  
Chi Jen Shih ◽  
Shao Ju Shih

Recent years mesoporous bioactive glasses (MBGs) have become important biomaterials because of their high surface area and the superior bioactivity. Various studies have reported that when MBGs implanted in a human body, hydroxyl apatite layers, constituting the main inorganic components of human bones, will form on the MBG surfaces to increase the bioactivity. Therefore, MBGs have been widely applied in the fields of tissue regeneration and drug delivery. The sol-gel process has replaced the conventional glasses process for MBG synthesis because of the advantages of low contamination, chemical flexibility and lower calcination temperature. In the sol-gel process, several types of surfactants were mixed with MBG precursor solutions to generate micelle structures. Afterwards, these micelles decompose to form porous structures after calcination. Although calcination is significant for contamination, crystalline and surface area in MBG, to the best of the authors’ knowledge, only few systematic studies related to calcination were reported. This study correlated the calcination parameters and the microstructure of MBGs. Microstructure evaluation was characterized by transmission electron microscopy and nitrogen adsorption/desorption. The experimental results show that the surface area and the pore size of MBGs decreased with the increasing of the calcination temperature, and decreased dramatically at 800°C due to the formation of crystalline phases.


2012 ◽  
Vol 463-464 ◽  
pp. 543-547 ◽  
Author(s):  
Cheng Feng Li ◽  
Xiao Lu Ge ◽  
Shu Guang Liu ◽  
Fei Yu Liu

Core-shell structured hydroxyapatite (HA)/meso-silica was prepared and used as absorbance of methylene blue (MB). HA/meso-silica was synthesized in three steps: preparation of nano-sized HA by wet precipitation method, coating of dense silica and deposition of meso-silica shell on HA. As-received samples were characterized by Fourier transformed infare spectra, small angle X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. A wormhole framework mesostructure was found for HA/meso-silica. The specific surface area and pore volume were 128 m2•g-1 and 0.36 cm3•g-1, respectively. From the adsorption isotherm, HA/meso-silica with the great specific surface area exhibited a prominent adsorption capacity of MB (134.0 mg/g) in comparison with bare HA (0 mg/g). This study might shed light on surface modification of conventional low-cost adsorbents for removal of organic pollutants from aqueous solutions.


Author(s):  
T. F. Kouznetsova ◽  
A. I. Ivanets ◽  
J. D. Sauka

Titania-silica membranes on a porous quartz substrate are prepared by its direct contact with metal silicate sol at various Ti/Si ratios in the conditions of coagel sedimentation and presence of cetylpyridinium chloride. The study of textural and adsorption properties of membranes is conducted by low-temperature nitrogen adsorption-desorption, including methods of t-plots and DFT theory. It was shown that obtained membranes have mesoporous structure with the specific surface area and pore hydraulic diameter varied in intervals of 64–217 m2 /g and 4–11 nm, respectively. Developed values of surface area remain up to molar ratio of Ti/Si = 50/50.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 545 ◽  
Author(s):  
Rogéria Bingre ◽  
Renna Li ◽  
Qiang Wang ◽  
Patrick Nguyen ◽  
Thomas Onfroy ◽  
...  

Additional porosity, such as meso- and macropores, was introduced in zeolite extrudates with the intention intuit of improving the effective diffusivity of the catalysts. The samples were characterized in depth by nitrogen adsorption-desorption, mercury intrusion porosimetry, ammonia temperature programmed desorption and adsorption of pyridine followed by infrared spectroscopy. The results revealed no significant change in the acidity but an increase of the pore volume. According to significant improvement in the effective diffusivity, the samples were tested in the methanol-to-hydrocarbons reaction. The catalytic stability was greatly enhanced with an increase in the pore volume, demonstrating a relation between effective diffusivity and resistance to deactivation by coke formation. Further experiments also revealed a higher toluene adsorption capacity and a raise in the breakthrough time over the most porous samples due to better accessibility of toluene molecules into the active sites of the zeolite.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 896 ◽  
Author(s):  
Hye-Min Lee ◽  
Kwan-Woo Kim ◽  
Young-Kwon Park ◽  
Kay-Hyeok An ◽  
Soo-Jin Park ◽  
...  

In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by field-emission scanning electron microscope, Cs-corrected field-emission transmission electron microscope, and X-ray diffraction analysis, respectively. The nitrogen adsorption isotherm-desorption characteristics were confirmed by Brunauer–Emmett–Teller, nonlocal density functional theory, and Barrett–Joyner–Halenda equations at 77 K. The results showed that the specific surface area and total pore volume of the activated samples increased with increasing the activation time. The specific surface area, the total pore volume, and mesopore volume of the PE-AC were found to be increased finally to 1600 m2/g, 0.86 cm3/g, and 0.3 cm3/g, respectively. The PE-AC also exhibited a high mesopore volume ratio of 35%. This mesopore-rich characteristic of the activated carbon from the LDPE is considered to be originated from the cross-linking density and crystallinity of precursor polymer. The high specific surface area and mesopore volume of the PE-AC led to their excellent performance as EDLC electrodes, including a specific capacitance of 112 F/g.


Sign in / Sign up

Export Citation Format

Share Document