Chamosite, a naturally occurring clay as a versatile catalyst for various organic transformations

Clay Minerals ◽  
2010 ◽  
Vol 45 (3) ◽  
pp. 281-299 ◽  
Author(s):  
R. Arundhathi ◽  
B. Sreedhar ◽  
G. Parthasarathy

AbstractThe chlorite-group mineral chamosite occurs in nanocrystalline form (~200 nm grain size) as a naturally occurring clay in the Quaternary marine sedimentary deposits near Kudiamozhi, Tuticorin District, Tamil Nadu, India; samples were used in this study as a reusable catalyst. The clay has the usual alternating tetrahedral-octahedral-tetrahedral silicate/aluminate/silicate layer structural arrangement (sometimes called the 2:1 silicate or talc layer structure). The interlayer and the t-o-t layer are bound together by both electrostatic and hydrogen-bonding forces. This natural clay catalyst has been well characterized by various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD), temperature programmed desorption (TPD), thermal analysis and BET surface area measurements (Sreedhar et al., 2009); it has been utilized for various organic transformations such as acylation of alcohols and amines, cyclization of arylaldehydes with O-phenylenediamines and C-O bond formation reactions.

Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 847 ◽  
Author(s):  
Seyed Moeini ◽  
Chiara Battocchio ◽  
Stefano Casciardi ◽  
Igor Luisetto ◽  
Paolo Lupattelli ◽  
...  

In the present study, the catalytic activity of palladium oxide (PdOx) supported on ceria nanorods (CeO2-NR) for aerobic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) was evaluated. The CeO2-NR was synthesized hydrothermally and the Pd(NO3)2 was deposited by a wet impregnation method, followed by calcination to acquire PdOx/CeO2-NR. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). In addition, the TPR-reduced PdOx/CeO2-NR (PdOx/CeO2-NR-Red) was studied by XRD, BET, and XPS. Characterizations showed the formation of CeO2-NR with (111) exposed plane and relatively high BET surface area. PdOx (x > 1) was detected to be the major oxide species on the PdOx/CeO2-NR. The activities of the catalysts in BnOH oxidation were evaluated using air, as an environmentally friendly oxidant, and various solvents. Effects of temperature, solvent nature and palladium oxidation state were investigated. The PdOx/CeO2-NR showed remarkable activity when protic solvents were utilized. The best result was achieved using PdOx/CeO2-NR and boiling ethanol as solvent, leading to 93% BnOH conversion and 96% selectivity toward PhCHO. A mechanistic hypothesis for BnOH oxidation with PdOx/CeO2-NR in ethanol is presented.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Antonio Jesús Fernández-Ropero ◽  
Bartosz Zawadzki ◽  
Krzysztof Matus ◽  
Wojciech Patkowski ◽  
Mirosław Krawczyk ◽  
...  

This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%).


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 387
Author(s):  
María Silvia Leguizamón Aparicio ◽  
María Lucia Ruiz ◽  
Marco Antonio Ocsachoque ◽  
Marta Isabel Ponzi ◽  
Enrique Rodríguez-Castellón ◽  
...  

Zirconia-supported gold-promoted cobalt catalysts were synthesized and tested for the complete oxidation of propane and naphthalene. The catalysts were characterized by BET surface area, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). In both propane and naphthalene combustion reactions, the results obtained indicate that catalysts formulated with Co3O4 are more active than those containing only Au. Catalysts prepared using the deposit/precipitation (DP) method have better activity than those in which the traditional technique is used. Gold addition using the DP methods generates a promoting effect on the activity of cobalt-containing catalysts. The AuDpCoZt catalyst was found to be the most active for both propane and naphthalene combustion. The catalytic behavior of this sample is associated with a synergic effect between gold, cobalt, and the support, which is also evidenced by an increase in the reducibility of this catalytic system. The effect of the presence of NO in the feed was also analyzed for propane combustion.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Fu Ding ◽  
Yajing Zhang ◽  
Guijin Yuan ◽  
Kangjun Wang ◽  
Ileana Dragutan ◽  
...  

A series of Ni/SiO2catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF) by hydrogenation of 2-methylfuran (2-MF). The catalyst structure was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR). It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF.


2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


2021 ◽  
pp. 174751982098472
Author(s):  
Jun Yu ◽  
Ying Han ◽  
Guoqing Chen ◽  
Xiuzhen Xiao ◽  
Haifang Mao ◽  
...  

The effect of carbon nanotubes on the catalytic properties of Rh-Mn-Li/SiO2 catalysts was investigated for CO hydrogenation. The catalysts were comprehensively characterized by means of X-ray power diffraction, N2 sorption, transmission electron microscope, H2–temperature-programmed reduction, CO–temperature-programmed desorption, temperature-programmed surface reaction, and X-ray photoelectron spectroscopy. The results showed that an appropriate amount of carbon nanotubes can be attached to the surface of the SiO2 sphere and can improve the Rh dispersion. Moderate Rh-Mn interaction can be obtained by doping with the appropriate amount of carbon nanotubes, which promotes the formation of strongly adsorbed CO and facilitates the progress of CO insertion, resulting in the increase in the selectivity of C2+ oxygenate synthesis.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosińska ◽  
Lukasz Szkudlarek ◽  
Karolina Chalupka ◽  
Misa Tatsuzawa ◽  
...  

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Yang Dang ◽  
Yu Cheng ◽  
Yukun Zhou ◽  
Yifei Huang ◽  
Kaige Wang

The treatment of organic dye contaminants in wastewaters has now becoming more imperative. Fenton-like degradation of methylene blue (MB) and methyl orange (MO) in aqueous solution was investigated by using a nanostructure that a layer of CuCl2 nanoflake film grown on the top surface of nanoporus anodic alumina substrate (nano-PAA-CuCl2) as catalyst. The new nano-PAA-CuCl2 composite was fabricated with self-assembly approach, that is, a network porous structure film composed of CuCl2 nanoflake grown on the upper surface of nanoporous anodic alumina substrate, and the physical and chemical properties are characterized systematically with the X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HRTEM), Energy Dispersive Spectrometer (EDS), X-ray photoelectron spectroscopy (XPS). The experimental results showed that the nano-PAA-CuCl2 catalyst presented excellent properties for the degradation of two typical organic pollutants such as MB and MO, which were almost completely degraded with 8 × 10−4mol/L nano-PAA-CuCl2 catalyst after 46 min and 60 min at reaction conditions of H2O2 18 mM and 23 mM, respectively. The effects of different reaction parameters such as initial pH, H2O2 concentration, catalyst morphology and temperature were attentively studied. And more, the stability and reusability of nano-PAA-CuCl2 were examined. Finally, the mechanism of MB and MO degradation by the nano-PAA-CuCl2/H2O2 system was proposed, based on the experimental data of the BCA and the temperature-programmed reduction (H2-TPR) and theoretical analysis, the reaction kinetics belonged to the pseudo-first-order equation. This new nanoporous composite material and preparation technology, as well as its application in Fenton-like reaction, provide an effective alternative method with practical application significance for wastewater treatment.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 541 ◽  
Author(s):  
Haiping Xiao ◽  
Chaozong Dou ◽  
Hao Shi ◽  
Jinlin Ge ◽  
Li Cai

A series of poisoned catalysts with various forms and contents of sodium salts (Na2SO4 and Na2S2O7) were prepared using the wet impregnation method. The influence of sodium salts poisoned catalysts on SO2 oxidation and NO reduction was investigated. The chemical and physical features of the catalysts were characterized via NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The results showed that sodium salts poisoned catalysts led to a decrease in the denitration efficiency. The 3.6% Na2SO4 poisoned catalyst was the most severely deactivated with denitration efficiency of only 50.97% at 350 °C. The introduction of SO42− and S2O72− created new Brønsted acid sites, which facilitated the adsorption of NH3 and NO reduction. The sodium salts poisoned catalysts significantly increased the conversion of SO2–SO3. 3.6%Na2S2O7 poisoned catalyst had the strongest effect on SO2 oxidation and the catalyst achieved a maximum SO2–SO3-conversion of 1.44% at 410 °C. Characterization results showed sodium salts poisoned catalysts consumed the active ingredient and lowered the V4+/V5+ ratio, which suppressed catalytic performance. However, they increased the content of chemically adsorbed oxygen and the strength of V5+=O bonds, which promoted SO2 oxidation.


Sign in / Sign up

Export Citation Format

Share Document