Natural mordenite-rich tuff as an alternative for removing textile dyes (Asucryl red): adsorption properties, kinetic and equilibrium studies

Clay Minerals ◽  
2019 ◽  
Vol 54 (4) ◽  
pp. 349-355
Author(s):  
Brahim Ayaden ◽  
Nouara Benabdeslam ◽  
Nedjima Bouzidi ◽  
Laila Mahtout ◽  
Mohamed Bounouala ◽  
...  

ABSTRACTThis work examines a tuff from the Tinebdar deposit located in Sidi Aich (east Algeria) for possible use as an alternative material for the adsorption of Asucryl red (a textile dye). Natural tuff represents an economic and environmentally friendly alternative compared to synthetic zeolites. The starting materials were characterized by means of powder X-ray diffraction, Brunauer–Emmett–Teller-specific surface area and pore diameter analysis. Batch experiments were performed and various parameters that have an effect on the adsorption process (i.e. pH, clay amount, contact time and initial concentration) were investigated. The <125 μm grain-size fraction of the tuff contains 45 wt.% mordenite. The adsorption equilibrium was established in 10 min and the adsorption kinetics were better described by the second-order kinetic model. The adsorption isotherm of the results obtained fits better to the Langmuir and Timkin models. The adsorption capacity qt varies from 60 to 70 mg g–1 with temperature increasing from 293 to 333 K. The thermodynamic nature of the adsorption process was determined by calculating ΔH°, ΔS° and ΔG° values. The positive value for ΔH° confirms that the adsorption is endothermic.

2017 ◽  
Vol 8 (3) ◽  
pp. 350-359 ◽  
Author(s):  
Danyang Yin ◽  
Zhengwen Xu ◽  
Jing Shi ◽  
Lili Shen ◽  
Zexiang He

Abstract In this study, schorl was used as an effective adsorbent for ciprofloxacin removal from wastewater. The adsorption performance, mechanism and effect of metal ion on sorption were investigated. Adsorption capacity reached a maximum (8.49 mg/g) when the pH value was 5.5. The pseudo-second-order kinetic model and Freundlich model could better describe the experimental data. The negative ΔH (–22.96 KJ/mol) value showed that the adsorption process was exothermic. The results also indicated physical adsorption existed on the adsorption process, which was in agreement with the analysis of X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy. The desorption rate could reach 94%, which suggested that schorl had a good desorption and regeneration performance. Coexisting ions, such as Cu2+ and Al3+, could obviously inhibit adsorption, and the inhibition from Al3+ was significantly higher than that from Cu2+. However, the additional Zn2+ could slightly promote the adsorption.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2017 ◽  
Vol 18 (4) ◽  
pp. 1406-1419
Author(s):  
F. Elmi ◽  
R. Chenarian Nakhaei ◽  
H. Alinezhad

Abstract This study is the first report of its type demonstrating the synthesis of mHAP on the basis of magnetic functionalization with nHAP, which were synthesized using Rutilus frisii kutum fish scale as a benign fishery waste by-product. The mHAP was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray diffraction (EDX), and Fourier transform infrared (FT-IR) spectroscopic techniques. The XRD pattern confirmed the formation of a single-phase nHAP without any extra steady phases. It was also found that the pseudo-second-order kinetic model gave a satisfactory fit to the experimental data (R2 = 0.99). The maximum removal percentages of Cu and Zn ions in optimal conditions (adsorbent dosage at 0.1 g, 30 min contact time at 25 ± 1 °C and pH = 5 ± 0.1) by mHAP were 97.1% and 93.8%, respectively. Results also demonstrated that mHAP could be recycled for up to five cycles in the case of copper and zinc. The Langmuir isotherm was proved to have a better correlation compared with that of the Freundlich isotherm. The thermodynamic parameters indicated that it was a spontaneously endothermic reaction. In conclusion, mHAP could be regarded as a powerful candidate for efficient biosorbent, capable of adsorbing heavy metals from aqueous solutions.


Author(s):  
Yan Sun ◽  
Xiaojun Song ◽  
Jing Ma ◽  
Haochen Yu ◽  
Gangjun Liu ◽  
...  

The polyacrylonitrile/fly ash composite was synthesized through solution polymerization and was modified with NH2OH·HCl. The amidoxime-modified polyacrylonitrile/fly ash composite demonstrated excellent adsorption capacity for Zn2+ in an aqueous medium. Fourier transform-Infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption, X-ray diffraction, and scanning electron microscopy were used to characterize the prepared materials. The results showed that the resulting amidoxime-modified polyacrylonitrile/fly ash composite was able to effectively remove Zn2+ at pH 4–6. Adsorption of Zn2+ was hindered by the coexisting cations. The adsorption kinetics of Zn2+ by Zn2+ followed the pseudo-second order kinetic model. The adsorption process also satisfactorily fit the Langmuir model, and the adsorption process was mainly single layer. The Gibbs free energy ΔG0, ΔH0, and ΔS0 were negative, indicating the adsorption was a spontaneous, exothermic, and high degree of order in solution system.


2020 ◽  
Vol 8 (4) ◽  
pp. 1258-1267

The objective of this work was the physicochemical characterization of a Moroccan natural clay from the Jorf Arfoud region (Lampert Coodinates: x = 595610, y = 101578) and its valorization in the elimination of organic pollutants (methyl orange MO and methylene blue MB) from aqueous solutions, with the adsorption technique on raw and calcined clay at 500°C. The clay was characterized by chemical analysis such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron microscopy (SEM). Crude and purified clays, consisting essentially of silica and alumina, are a characteristic property of phyllosilicates and also contain amounts of quartz, kaolinite and calcite as associated minerals. The experiments were performed after optimization of the parameters influencing the system, such as pH, adsorbent mass, initial dye concentration and temperature. The clays used absorb better the MB than MO, for an initial concentration of 10 mg/L and 20 mg/L respectively. Langmuir and Freundlich models of adsorption isotherms were applied to fit experimental equilibrium data. Results have showed that the adsorption of MB and MO followed very well the second order kinetic model on raw clay. The adsorption process was found to be exothermic in the case of MB. However, the adsorption of MO was endothermic.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Duyen Thi Le ◽  
Thao Phuong Thi Le ◽  
Hai Thi Do ◽  
Hanh Thi Vo ◽  
Nam Thi Pham ◽  
...  

Porous hydroxyapatite (HAp) granules have been successfully fabricated from a HAp powder precursor and polyvinyl alcohol (PVA) additive by a simple sintering process. The composition and microstructures of the HAp were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer. The effects of sintering temperature and PVA/HAp mass ratios on color, water stability, morphology, and chemical composition of HAp are discussed. Optimum conditions for the fabrication of HAp granules were found to be a PVA/HAp mass ratio of 3/20 and a sintering temperature of 600°C for 4 h. Accordingly, the obtained HAp is white in color, is in the granular form with a size of about 2 × 10 mm, and has a specific surface area of 70.6 m2/g. The adsorption of Pb2+ onto the as-prepared HAp granules was carried out in aqueous solution by varying the pH, the adsorbent dose, the initial concentration of Pb2+, and the contact time. The results of adsorption stoichiometry of Pb2+ on the HAp granule adsorbent were fitted to the Langmuir adsorption isotherm model (R2 = 0.99). The adsorption capacity and removal efficiency of the HAp granule adsorbent for Pb2+ under optimal conditions were found to be 7.99 mg/g and 95.92%, respectively. The adsorption process obeyed a pseudo-second-order kinetic model with R2∼1. The porous HAp granules studied in this work showed potential for the removal of Pb2+ from industrial wastewater.


Clay Minerals ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 485-496 ◽  
Author(s):  
I. Hamadneh ◽  
R. Abu-Zurayk ◽  
B. Abu-Irmaileh ◽  
A. Bozeya ◽  
A. H. Al-Dujaili

AbstractA comparative study using bentonite (BT), hexadecyltrimethylammonium-modified bentonite (BT-HDTMA) and phenyl fatty hydroxamic acid-modified bentonite (BT-PFHA) as adsorbents for the removal of Pb(II) has been proposed. These adsorbents were characterized by X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy and surface area measurement. Cation exchange capacity was also determined in this study. The adsorbent capabilities for Pb(II) from aqueous solution were investigated, and the optimal experimental conditions including adsorption time, adsorbent dosage, the initial concentration of Pb(II), pH and temperature that might influence the adsorption performance were also investigated. The experimental equilibrium adsorption data were tested by four widely used two-parameter equations, the Langmuir, Freundlich, Dubinin- Radushkevich (D-R) and Temkin isotherms. The monolayer adsorption capacities of BT, BT-HDTMA and BT-PFHA for Pb(II) were 149.3, 227.3 and 256.4 mg/g, respectively. The experimental kinetic data were analysed by pseudo-first order, pseudo-second order and intraparticle diffusion kinetics models. The experimental data fitted very well with the pseudo-second order kinetic model. Determination of the thermodynamic parameters, ΔG, ΔH and ΔS showed the adsorption to be feasible, spontaneous and exothermic.


2016 ◽  
Vol 6 (4) ◽  
pp. 562-573 ◽  
Author(s):  
Farshad Omidvar-Hosseini ◽  
Farid Moeinpour

Acacia Nilotica seed shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles were synthesized by a low-cost, simple, and environmentally benign procedure. The adsorbent was characterized by several methods including X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. Then, the potential of Acacia Nilotica seed shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles was investigated for adsorption of Pb(II). The effect of different parameters including contact time, pH, adsorbent dosage and initial Pb(II) concentration on the Pb(II) removal yield was studied. The experimental data were fitted well with the pseudo-second order kinetic model (R2 = 0.999). The adsorption isotherm was described well by the Langmuir isotherm (R2 = 0.900) with a maximum monolayer adsorption capacity of 37.6 mg g–1. The process for purifying water treatment presented here is easy using the magnetic nanoparticles. Therefore, this adsorbent was found to be useful and valuable for controlling water pollution due to Pb(II) ions.


2021 ◽  
Vol 947 (1) ◽  
pp. 012012
Author(s):  
Ngo Truong Ngoc Mai ◽  
Nguyen Thi Anh Thu ◽  
Ngo Truong Bao Trang ◽  
Pham Quoc Phu ◽  
Doan Van Hong Thien ◽  
...  

Abstract In this study, zeolite NaA was fabricated from rice husk ash before combining with Fe3O4 to form a magnetic NaA/Fe3O4 composite. NaA/Fe3O4 composite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer Emmett Teller (BET). The surface area and the pore size of zeolite NaA/Fe3O4 was 24.11 m2.g−1 and 23.04 Å. In addition, batch adsorption studies were carried out for the removal of chromium (VI) ion in aqueous solution. The effects of adsorption parameters, including pH solution, initial concentration of Cr (VI) ions, mass of adsorbent, and contact time were investigated. The maximum equilibrium adsorption capacity of zeolite NaA and NaA/Fe3O4 was 22.554 mg.g−1 and 13.722 mg.g−1, respectively. The pseudo-first order kinetic model fitted well to the experimental data. The regeneration of the adsorbent was also investigated for three cycles.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 378 ◽  
Author(s):  
Junjing Li ◽  
Huan Wang ◽  
Liang Wang ◽  
Chang Ma ◽  
Cong Luan ◽  
...  

Noble metal palladium modified foamed nickel electrode (Pd/foam-Ni) was prepared by electrodeposition method. The fabricated electrode showed better catalytic performance than the Pd/foam-Ni prepared by conventional electroless deposition. The catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Electrocatalytic activity of the Pd/Ni was studied for the hydrodechlorination of monochlorophenol isomers. The Pd/Ni exhibited good catalytic activity for 3-chlorophenol (3-CP). Complete decomposition of chlorophenol isomers could be achieved within 2 h, and the hydrodechlorination process conformed to the pseudo-first-order kinetic model. It showed a supreme stability after recycling for 5 times. The Pd/Ni exhibited a promising application prospect with high effectiveness and low Pd loading.


Sign in / Sign up

Export Citation Format

Share Document