scholarly journals Assessment of crystallographic influence on material properties of calcite brachiopods

2008 ◽  
Vol 72 (2) ◽  
pp. 563-568 ◽  
Author(s):  
A. Pérez-Huerta ◽  
M. Cusack ◽  
W. Zhu

AbstractCalcium carbonate biominerals are frequently analysed in materials science due to their abundance, diversity and unique material properties. Aragonite nacre is intensively studied, but less information is available about the material properties of biogenic calcite, despite its occurrence in a wide range of structures in different organisms. In particular, there is insufficient knowledge about how preferential crystallographic orientations influence these material properties. Here, we study the influence of crystallography on material properties in calcite semi-nacre and fibres of brachiopod shells using nanoindentation and electron backscatter diffraction (EBSD). The nano-indentation results show that calcite semi-nacre is a harder and stiffer (H ≈ 3—5 GPa; E = 50–85 GPa) biomineral structure than calcite fibres (H = 0.4—3 GPa; E = 30—60 GPa). The integration of EBSD to these studies has revealed a relationship between the crystallography and material properties at high spatial resolution for calcite semi-nacre. The presence of crystals with the c-axis perpendicular to the plane-of-view in longitudinal section increases hardness and stiffness. The present study determines how nano-indentation and EBSD can be combined to provide a detailed understanding of biomineral structures and their analysis for application in materials science.

2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Penny E. Wieser ◽  
Marie Edmonds ◽  
John Maclennan ◽  
John Wheeler

AbstractDistorted olivines of enigmatic origin are ubiquitous in erupted products from a wide range of volcanic systems (e.g., Hawaiʻi, Iceland, Andes). Investigation of these features at Kīlauea Volcano, Hawaiʻi, using an integrative crystallographic and chemical approach places quantitative constraints on mush pile thicknesses. Electron backscatter diffraction (EBSD) reveals that the microstructural features of distorted olivines, whose chemical composition is distinct from undistorted olivines, are remarkably similar to olivines within deformed mantle peridotites, but inconsistent with an origin from dendritic growth. This, alongside the spatial distribution of distorted grains and the absence of adcumulate textures, suggests that olivines were deformed within melt-rich mush piles accumulating within the summit reservoir. Quantitative analysis of subgrain geometry reveals that olivines experienced differential stresses of ∼3–12 MPa, consistent with their storage in mush piles with thicknesses of a few hundred metres. Overall, our microstructural analysis of erupted crystals provides novel insights into mush-rich magmatic systems.


2020 ◽  
Vol 53 (4) ◽  
pp. 1060-1072 ◽  
Author(s):  
Edward L. Pang ◽  
Peter M. Larsen ◽  
Christopher A. Schuh

Resolving pseudosymmetry has long presented a challenge for electron backscatter diffraction and has been notoriously challenging in the case of tetragonal ZrO2 in particular. In this work, a method is proposed to resolve pseudosymmetry by building upon the dictionary indexing method and augmenting it with the application of global optimization to fit accurate pattern centers, clustering of the Hough-indexed orientations to focus the dictionary in orientation space and interpolation to improve the accuracy of the indexed solution. The proposed method is demonstrated to resolve pseudosymmetry with 100% accuracy in simulated patterns of tetragonal ZrO2, even with high degrees of binning and noise. The method is then used to index an experimental data set, which confirms its ability to efficiently and accurately resolve pseudosymmetry in these materials. The present method can be applied to resolve pseudosymmetry in a wide range of materials, possibly even some more challenging than tetragonal ZrO2. Source code for this implementation is available online.


2011 ◽  
Vol 17 (3) ◽  
pp. 316-329 ◽  
Author(s):  
Stuart I. Wright ◽  
Matthew M. Nowell ◽  
David P. Field

AbstractSince the automation of the electron backscatter diffraction (EBSD) technique, EBSD systems have become commonplace in microscopy facilities within materials science and geology research laboratories around the world. The acceptance of the technique is primarily due to the capability of EBSD to aid the research scientist in understanding the crystallographic aspects of microstructure. There has been considerable interest in using EBSD to quantify strain at the submicron scale. To apply EBSD to the characterization of strain, it is important to understand what is practically possible and the underlying assumptions and limitations. This work reviews the current state of technology in terms of strain analysis using EBSD. First, the effects of both elastic and plastic strain on individual EBSD patterns will be considered. Second, the use of EBSD maps for characterizing plastic strain will be explored. Both the potential of the technique and its limitations will be discussed along with the sensitivity of various calculation and mapping parameters.


2021 ◽  
Vol 22 (23) ◽  
pp. 12752
Author(s):  
Jaroslav Hornak

In the last few decades, there has been a trend involving the use of nanoscale fillers in a variety of applications. Significant improvements have been achieved in the areas of their preparation and further applications (e.g., in industry, agriculture, and medicine). One of these promising materials is magnesium oxide (MgO), the unique properties of which make it a suitable candidate for use in a wide range of applications. Generally, MgO is a white, hygroscopic solid mineral, and its lattice consists of Mg2+ ions and O2− ions. Nanostructured MgO can be prepared through different chemical (bottom-up approach) or physical (top-down approach) routes. The required resultant properties (e.g., bandgap, crystallite size, and shape) can be achieved depending on the reaction conditions, basic starting materials, or their concentrations. In addition to its unique material properties, MgO is also potentially of interest due to its nontoxicity and environmental friendliness, which allow it to be widely used in medicine and biotechnological applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Yangyang Zhang ◽  
Manoj K. Ram ◽  
Elias K. Stefanakos ◽  
D. Yogi Goswami

ZnO nanowires (or nanorods) have been widely studied due to their unique material properties and remarkable performance in electronics, optics, and photonics. Recently, photocatalytic applications of ZnO nanowires are of increased interest in environmental protection applications. This paper presents a review of the current research of ZnO nanowires (or nanorods) with special focus on photocatalysis. We have reviewed the semiconducting photocatalysts and discussed a variety of synthesis methods of ZnO nanowires and their corresponding effectiveness in photocatalysis. We have also presented the characterization of ZnO nanowires from the literature and from our own measurements. Finally, a wide range of uses of ZnO nanowires in various applications is highlighted in this paper.


2013 ◽  
Vol 19 (4) ◽  
pp. 950-958 ◽  
Author(s):  
Gert Nolze

AbstractPole figures are often used to present crystal orientation data. The huge number of single orientation measurements acquired by electron backscatter diffraction (EBSD) poses a challenge for pole figure representation due to the large number of calculations required. This significantly reduces the speed at which the data may be rotated and affects the ability to switch between different projection types. In the present work, it will be shown that satisfactory representation of orientation data in different projection types can generally be achieved by an imaging of a spherical projection. With this approach, explicit calculation of the projections is no longer required, allowing for both real-time dataset rotation and real-time switching between all projection types relevant to materials science. The technique can be applied to any other directional property distribution, for example, not only for EBSD orientation presentation.


1997 ◽  
Vol 3 (S2) ◽  
pp. 879-880
Author(s):  
J. R. Michael ◽  
M. E. Schlienger ◽  
R. P. Goehner

The technique of electron backscatter diffraction (EBSD) in the scanning electron microscope is currently finding a large number of important applications in materials science. The patterns formed through EBSD were first studied over 40 years ago. It has only been in the last 10 years that the technique has really begun to have an impact on the study of materials. The introduction of automatic pattern indexing software has enabled the technique to be used for mapping the orientation of a polycrystalline sample. The more exciting and universally interesting application of the technique has been the identification of micron and sub-micron sized crystalline phases based on their chemistry and crystallography determined by EBSD.EBSD is obtained by illuminating a highly tilted sample (>45° from horizontal) with a stationary electron beam. Electrons backscattered from the sample may satisfy the condition for channeling and will produce images that contain bands of increased and decreased intensity that are equivalent to electron channeling patterns.


Sign in / Sign up

Export Citation Format

Share Document