Src and phosphatidylinositol 3–kinase mediate soluble E-selectin–induced angiogenesis

Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 3960-3968 ◽  
Author(s):  
Pawan Kumar ◽  
Mohammad A. Amin ◽  
Lisa A. Harlow ◽  
Peter J. Polverini ◽  
Alisa E. Koch

Abstract Angiogenesis plays an important role in a variety of pathophysiologic processes, including tumor growth and rheumatoid arthritis. We have previously shown that soluble E-selectin (sE-selectin) is an important angiogenic mediator. However, the mechanism by which sE-selectin mediates angiogenesis is still unknown. In this study, we show that sE-selectin is a potent mediator of human dermal microvascular endothelial cell (HMVEC) chemotaxis, which is predominantly mediated through the Src and the phosphatidylinositiol 3–kinase (PI3K) pathways. Further, sE-selectin induced a 2.2-fold increase in HMVEC tube formation in the Matrigel in vitro assay. HMVECs pretreated with the Src inhibitor (PP2) and the PI3K inhibitor (LY294002) or transfected with Src antisense oligonucleotides or Akt dominant-negative mutants significantly inhibited sE-selectin–mediated HMVEC tube formation. In contrast, HMVECs transfected with an extracellular signal-related kinase 1/2 (ERK1/2) mutant or pretreated with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 failed to show sE-selectin–mediated HMVEC tube formation. Similarly, in the Matrigel-plug in vivo assay, sE-selectin induced a 2.2-fold increase in blood vessel formation, which was significantly inhibited by PP2 and LY294002 but not by PD98059. sE-selectin induced a marked increase in Src, ERK1/2, and PI3K phosphorylation. PI3K and ERK1/2 phosphorylation was significantly inhibited by PP2, thereby suggesting that both of these pathways may be activated via Src kinase. Even though the ERK1/2 pathway was activated by sE-selectin in HMVECs, it seems not to be essential for sE-selectin–mediated angiogenesis. Taken together, our data clearly show that sE-selectin–induced angiogenesis is predominantly mediated through the Src-PI3K pathway.

2012 ◽  
Vol 123 (3) ◽  
pp. 147-159 ◽  
Author(s):  
Ting-Hsing Chao ◽  
Shih-Ya Tseng ◽  
Yi-Heng Li ◽  
Ping-Yen Liu ◽  
Chung-Lung Cho ◽  
...  

Cilostazol is an anti-platelet agent with vasodilatory activity that acts by increasing intracellular concentrations of cAMP. Recent reports have suggested that cilostazol may promote angiogenesis. In the present study, we have investigated the effect of cilostazol in promoting angiogenesis and vasculogenesis in a hindlimb ischaemia model and have also examined its potential mechanism of action in vitro and in vivo. We found that cilostazol treatment significantly increased colony formation by human early EPCs (endothelial progenitor cells) through a mechanism involving the activation of cAMP/PKA (protein kinase A), PI3K (phosphoinositide 3-kinase)/Akt/eNOS (endothelial NO synthase) and ERK (extracellular-signal-regulated kinase)/p38 MAPK (mitogen-activated protein kinase) signalling pathways. Cilostazol also enhanced proliferation, chemotaxis, NO production and vascular tube formation in HUVECs (human umbilical vein endothelial cells) through activation of multiple signalling pathways downstream of PI3K/Akt/eNOS. Cilostazol up-regulated VEGF (vascular endothelial growth factor)-A165 expression and secretion of VEGF-A in HUVECs through activation of the PI3K/Akt/eNOS pathway. In a mouse hindlimb ischaemia model, recovery of blood flow ratio (ipsilateral/contralateral) 14 days after surgery was significantly improved in cilostazol-treated mice (10 mg/kg of body weight) compared with vehicle-treated controls (0.63±0.07 and 0.43±0.05 respectively, P<0.05). Circulating CD34+ cells were also increased in cilostazol-treated mice (3614±670 compared with 2151±608 cells/ml, P<0.05). Expression of VEGF and phosphorylation of PI3K/Akt/eNOS and ERK/p38 MAPK in ischaemic muscles were significantly enhanced by cilostazol. Our data suggest that cilostazol produces a vasculo-angiogenic effect by up-regulating a broad signalling network that includes the ERK/p38 MAPK, VEGF-A165, PI3K/Akt/eNOS and cAMP/PKA pathways.


2007 ◽  
Vol 176 (5) ◽  
pp. 709-718 ◽  
Author(s):  
Chunxi Ge ◽  
Guozhi Xiao ◽  
Di Jiang ◽  
Renny T. Franceschi

The extracellular signal–regulated kinase (ERK)–mitogen-activated protein kinase (MAPK) pathway provides a major link between the cell surface and nucleus to control proliferation and differentiation. However, its in vivo role in skeletal development is unknown. A transgenic approach was used to establish a role for this pathway in bone. MAPK stimulation achieved by selective expression of constitutively active MAPK/ERK1 (MEK-SP) in osteoblasts accelerated in vitro differentiation of calvarial cells, as well as in vivo bone development, whereas dominant-negative MEK1 was inhibitory. The involvement of the RUNX2 transcription factor in this response was established in two ways: (a) RUNX2 phosphorylation and transcriptional activity were elevated in calvarial osteoblasts from TgMek-sp mice and reduced in cells from TgMek-dn mice, and (b) crossing TgMek-sp mice with Runx2+/− animals partially rescued the hypomorphic clavicles and undemineralized calvaria associated with Runx2 haploinsufficiency, whereas TgMek-dn; Runx2+/− mice had a more severe skeletal phenotype. This work establishes an important in vivo function for the ERK–MAPK pathway in bone that involves stimulation of RUNX2 phosphorylation and transcriptional activity.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Shin-Young Park ◽  
Chen Yan ◽  
Bradford C Berk

Introduction— Thioredoxin-interacting protein (TXNIP) is an arrestin-like scaffold protein. We have shown previously that it is necessary for the transactivation of the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) as well as promoting the migration and survival of endothelial cells (ECs). However, its roles in VEGF-induced angiogenesis and in vivo studies of TXNIP function have not been elucidated. Hypothesis— TXNIP regulates VEGF-mediated angiogenesis through modulation of angiogenic signaling pathways in ECs. Methods and Results— To determine the functions of TXNIP in ECs, we generated endothelial-specific TXNIP knockout (EC-TXNIP KO) mice (TXNIPflox/flox: Tie2-Cre/+). These mice displayed impaired capillary growth of the retinal vasculature compared to control mice. Furthermore, aortic rings from EC-TXNIP KO mice exhibited fewer and shorter vascular sprouts than those in control mice. To investigate the role of TXNIP in the regulation of VEGF-induced angiogenesis, we determined the subcellular localization of TXNIP in human umbilical vein EC (HUVEC). Immunofluorescence and cell fractionation studies revealed that upon VEGF stimulation (10ng/ml). TXNIP translocated from cytoplasm to the plasma membrane. There was a 9 fold increase of membrane associated TXNIP with a peak at 15 minutes compared to non-VEGF treatment cells. We hypothesized that membrane associated TXNIP may modulate VEGFR2 internalization and thereby affect VEGF-induced signaling and angiogenesis. To investigate this, we performed in vitro cell surface biotinylation assays in HUVEC. VEGFR2 internalization was decreased by 65% in TXNIP siRNA knockdown cells compared to control siRNA treated cells following VEGF stimulation. Consistent with this result, VEGF-induced phosphorylation of VEGFR2, PLCγ and ERK1/2 was decreased by knockdown of TXNIP. Significantly, TXNIP knockdown inhibited VEGF-induced proliferation and tube formation in vitro. Conclusion— Our results suggest that TXNIP can modulate VEGF-induced angiogenesis and signaling by regulation of VEGFR2 internalization.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ikumi Tsuchiya ◽  
Takahiro Hosoya ◽  
Motoko Ushida ◽  
Kazuhiro Kunimasa ◽  
Toshiro Ohta ◽  
...  

Propolis, a resinous substance that honeybees collect to protect their beehive from enemies, is reported to have various biological activities. In our screening program to search for antiangiogenic compounds from propolis, the ethanol extracts of Okinawan propolis (EEOP) showed significant antiangiogenic activities in a tube formation assay with human umbilical vein endothelial cells (HUVECs)in vitroat 3.13 μg/mL and chorioallantoic membrane (CAM) assayin vivoat 25 μg/egg. To elucidate the active compounds of EEOP and their mode of action, we isolated some prenylated flavonoids from EEOP and found that nymphaeol-A had the strongest antiangiogenic activity among them. Nymphaeol-A significantly reducedin vivoneovessel formation in the CAM assay at 25 μg/egg. At the molecular level, nymphaeol-A markedly inactivated mitogen-activated protein kinase/ERK kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2), whose molecular activations signal new vessel formation in HUVECs. In addition, nymphaeol-A dose- and time-dependently induced caspase-dependent apoptosis in tube-forming HUVECs. Taken together, nymphaeol-A was shown to inhibit angiogenesis at least in part via inactivation of MEK1/2–ERK1/2 signaling and induction of caspase-dependent apoptosis. Okinawan propolis and its major component, nymphaeol-A, may be useful agents for preventing tumor-induced angiogenesis.


Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2045-2053 ◽  
Author(s):  
Francesco De Marchis ◽  
Domenico Ribatti ◽  
Claudia Giampietri ◽  
Alessandro Lentini ◽  
Debora Faraone ◽  
...  

Abstract Basic fibroblast growth factor (bFGF) and platelet-derived growth factor-BB (PDGF-BB) modulate vascular wall cell function in vitro and angiogenesis in vivo. The aim of the current study was to determine how bovine aorta endothelial cells (BAECs) respond to the simultaneous exposure to PDGF-BB and bFGF. It was found that bFGF-dependent BAEC migration, proliferation, and differentiation into tubelike structures on reconstituted extracellular matrix (Matrigel) were inhibited by PDGF-BB. The role played by PDGF receptor α (PDGF-Rα) was investigated by selective stimulation with PDGF-AA, by blocking PDGF-BB-binding to PDGF-Rα with neomycin, or by transfecting cells with dominant-negative forms of the receptors to selectively impair either PDGF-Rα or PDGF-Rβ function. In all cases, PDGF-Rα impairment abolished the inhibitory effect of PDGF-BB on bFGF-directed BAEC migration. In addition, PDGF-Rα phosphorylation was increased in the presence of bFGF and PDGF, as compared to PDGF alone, whereas mitogen-activated protein kinase phosphorylation was decreased in the presence of PDGF-BB and bFGF compared with bFGF alone. In vivo experiments showed that PDGF-BB and PDGF-AA inhibited bFGF-induced angiogenesis in vivo in the chick embryo chorioallantoic membrane assay and that PDGF-BB inhibited bFGF-induced angiogenesis in Matrigel plugs injected subcutaneously in CD1 mice. Taken together these results show that PDGF inhibits the angiogenic properties of bFGF in vitro and in vivo, likely through PDGF-Rα stimulation.


1999 ◽  
Vol 112 (12) ◽  
pp. 2049-2057
Author(s):  
P. Gillis ◽  
U. Savla ◽  
O.V. Volpert ◽  
B. Jimenez ◽  
C.M. Waters ◽  
...  

Keratinocyte growth factor (KGF), also called fibroblast growth factor-7, is widely known as a paracrine growth and differentiation factor that is produced by mesenchymal cells and has been thought to act specifically on epithelial cells. Here it is shown to affect a new cell type, the microvascular endothelial cell. At subnanomolar concentrations KGF induced in vivo neovascularization in the rat cornea. In vitro it was not effective against endothelial cells cultured from large vessels, but did act directly on those cultured from small vessels, inducing chemotaxis with an ED50 of 0.02-0.05 ng/ml, stimulating proliferation and activating mitogen activated protein kinase (MAPK). KGF also helped to maintain the barrier function of monolayers of capillary but not aortic endothelial cells, protecting against hydrogen peroxide and vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induced increases in permeability with an ED50 of 0.2-0.5 ng/ml. These newfound abilities of KGF to induce angiogenesis and to stabilize endothelial barriers suggest that it functions in microvascular tissue as it does in epithelial tissues to protect them against mild insults and to speed their repair after major damage.


2015 ◽  
Vol 309 (7) ◽  
pp. L700-L709 ◽  
Author(s):  
Havovi Chichger ◽  
Julie Braza ◽  
Huetran Duong ◽  
Myranda Stark ◽  
Elizabeth O. Harrington

Neovascularization, the formation of new blood vessels, requires multiple processes including vascular leak, migration, and adhesion. Endosomal proteins, such as Rabs, regulate trafficking of key signaling proteins involved in neovascularization. The novel endosome protein, p18, enhances vascular endothelial (VE)-cadherin recycling from early endosome to cell junction to improve pulmonary endothelial barrier function. Since endothelial barrier integrity is vital in neovascularization, we sought to elucidate the role for endosome proteins p18 and Rab4, Rab7, and Rab9 in the process of vessel formation within the pulmonary vasculature. Overexpression of wild-type p18 (p18wt), but not the nonendosomal-binding mutant (p18N39), significantly increased lung microvascular endothelial cell migration, adhesion, and both in vitro and in vivo tube formation. Chemical inhibition of mTOR or p38 attenuated the proneovascularization role of p18wt. Similar to the effect of p18wt, overexpression of prorecycling wild-type (Rab4WT) and endosome-anchored (Rab4Q67L) Rab4 enhanced neovascularization processes, whereas molecular inhibition of Rab4, by using the nonendosomal-binding mutant (Rab4S22N) attenuated VEGF-induced neovascularization. Unlike p18, Rab4-induced neovascularization was independent of mTOR or p38 inhibition but was dependent on p18 expression. This study shows for the first time that neovascularization within the pulmonary vasculature is dependent on the prorecycling endocytic proteins Rab4 and p18.


1999 ◽  
Vol 19 (1) ◽  
pp. 948-956 ◽  
Author(s):  
Qihong Zhao ◽  
Brandi L. Williams ◽  
Robert T. Abraham ◽  
Arthur Weiss

ABSTRACT The protein tyrosine kinase ZAP-70 plays an important role in T-cell activation and development. After T-cell receptor stimulation, ZAP-70 associates with the receptor and is phosphorylated on many tyrosines, including Y292, Y315, and Y319 within interdomain B. Previously, we demonstrated that Y292 negatively regulates ZAP-70 function and that Y315 positively regulates ZAP-70 function by interacting with Vav. Recent studies have suggested that Y319 also positively regulate ZAP-70 function. Paradoxically, removal of interdomain B (to create the construct designated Δ), containing the Y292, Y315, and Y319 sites, did not eliminate the ability of ZAP-70 to induce multiple gene reporters in Syk-deficient DT-40 B cells and ZAP-70/Syk-deficient Jurkat cells. Here we show that Δ still utilizes the same pathways as wild-type ZAP-70 to mediate NF-AT induction. This is manifested by the ability of Δ to restore induction of calcium fluxes and mitogen-activated protein kinase activation and by the ability of dominant negative Ras and FK506 to block the induction of NF-AT activity mediated by Δ. Biochemically we show that the stimulated tyrosine phosphorylation of Vav, Shc, and ZAP-70 itself is diminished, whereas that of Slp-76 is increased in cells reconstituted with Δ. Deletion of interdomain B did not affect the ability of ZAP-70 to bind to the receptor. The in vitro kinase activity of ZAP-70 lacking interdomain B was markedly reduced, but the kinase activity was still required for the protein’s in vivo activity. Based on these data, we concluded that interdomain B regulates but is not required for ZAP-70 signaling function leading to cellular responses.


1998 ◽  
Vol 111 (24) ◽  
pp. 3621-3631 ◽  
Author(s):  
N. Ilan ◽  
S. Mahooti ◽  
J.A. Madri

Angiogenesis, the formation of new blood vessels from pre-existing ones, occurs during development, wound healing and cancer and involves stages that orchestrate a network of cooperative interactions. Peptide growth factors and extracellular matrix (ECM) components are two major groups of angiogenesis mediators. Among the different ECM proteins, collagens have been well-associated with in vivo angiogenesis. Using human umbilical vein endothelial cells (HUVEC) grown in 3-D collagen gels we show that: (1) HUVEC do not survive well in 3-D collagen gels due to rapid induction of apoptosis. (2) VEGF, a potent in vivo angiogenic factor, fails to induce tube formation. (3) PMA was effective in inducing tube formation and survival in HUVEC dispersed in 3-D collagen gels, activating MAP kinase, phosphoinositide 3-OH kinase (PI-3-kinase) and Akt/PKB (protein kinase B) pathways. (4) VEGF was effective in preventing PMA-induced tube-like structure regression after PMA-withdrawal by (5) activating the mitogen activated protein kinase (MAPK), rather than the Akt/PKB, signaling pathway.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3934-3934
Author(s):  
Abdel Kareem Azab ◽  
Feda Azab ◽  
Phong Quang ◽  
Patricia Maiso ◽  
Hai T Ngo ◽  
...  

Abstract Abstract 3934 INTRODUCTION: The interaction of multiple myeloma (MM) cells with the bone marrow (BM) microenvironment plays a crucial role in MM pathogenesis. The BM microenvironment in MM is characterized by an increased micro-vessel density and increased secretion of angiogenic factors. CXCR7 is a G-protein coupled receptor shown to play a major role in the adhesion, migration and angiogenesis of endothelial cells (ECs). Our interest is in the role of CXCR7 in cell trafficking of ECs and EPCs in MM. Thus we characterized ECs and EPCs from MM patients and MM animal models and examined the contribution of CXCR7 to the cell trafficking using in vitro and in vivo assays and using CXCR7-selective compound. METHODS AND RESULTS: We used flow cytometry to detect the frequency of ECs and EPCs in the BM and peripheral blood (PB) of 5 MM patients and 5 normal subjects. ECs were detected as VEGFR+ CD133- cells, while EPCs were detected as VEGFR+ CD133+ cells. MM patients had significantly higher numbers of ECs and EPCs compared to healthy donors in both the BM and the PB. These results were confirmed in a mouse model of MM in which MM cells or vehicle were injected to SCID mice and the frequency of ECs and EPCs in the BM and the PB was determined 4 weeks after injection. We found that in mice with MM significantly higher numbers of ECs and EPCs could be detected in both the BM and the PB than in control mice. CXCR7 was expressed on both ECs and EPCs isolated from MM patients, healthy donors, and control mice. The expression of CXCR7 on EPCs was higher than the expression on ECs. The expression of CXCR7 on ECs and EPCs isolated from the BM was higher than the expression on ECs and EPCs isolated from the PB, respectively. Therefore, to test the role of CXCR7 in cell-trafficking of ECs and EPCs, we injected 10mg/kg of CXCR7 inhibitor POL6926, a potent and selective CXCR7 antagonist based on the Protein Epitope Mimetics (PEM) Technology (Polyphor, Switzerland), to BALB/c mice and tested the frequency of ECs and EPC in the PB and BM of the mice at 0, 2, 4 and 24 hours after the injection. We found a 3-fold increase in ECs and 6-fold increase in EPCs in the PB; 2 hrs post the injection of the CXCR7 antagonist. The levels of EPCs in the PB returned to baseline at 4 and 24 hrs, while the level of ECs was maintained at 4hrs and went back to baseline at 24 hrs. No significant differences were found in the frequency of ECs and EPCs in the BM after the injection of the CXCR7 antagonist. To investigate the function of CXCR7 in ECs in vitro we used human umbilical vein endothelial cells (HUVECs) as a model for ECs. CXCR7 was highly expressed on HUVECs. We could demonstrate that in vitro tube formation was promoted by either co-culture of MM cells or by conditioned medium from MM cell cultures. Furthermore, migration of HUVEC cells was facilitated by conditioned medium from MM cell cultures. These data suggest that MM cells may secrete factors promoting migration of endothelial cells and pro-angiogenic factors promoting angiogenesis. In addition, we could show that in vitro tube formation is inhibited by POL6926 suggesting that CXCR7 expression on HUVECs is required for tube formation. At the test concentrations POL6926 was not cytotoxic to HUVECs since cell proliferation was unaffected. CONCLUSION: We have shown that the level of ECs and EPCs was elevated in the PB and BM of MM patients compared to normal subjects, a finding which was confirmed in a MM mouse model in which CXCR7 was highly expressed on these cells. Injection of PEM CXCR7 antagonist increased the numbers of ECs and EPCs in the PB. These results suggest that CXCR7 may play a role in the cell-trafficking and recruitment of ECs and EPCs in MM. To investigate this hypothesis, using in vitro tube formation and migration assays, we have shown that MM cells secrete factors that promote migration and angiogenesis of HUVECs and the PEM CXCR7 antagonist inhibits these processes. In subsequent studies POL6926 will be tested in vivo in animal models of MM to determine the contribution of CXCR7 in EPC trafficking and its contribution to angiogenesis progression in MM. Disclosures: Zimmermann: Polyphor: Employment. Patel:Polyphor: Employment. Romagnoli:Polyphor: Employment. Roccaro:Roche:. Ghobrial:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document