Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging

Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 640-648 ◽  
Author(s):  
Matthias Edinger ◽  
Yu-An Cao ◽  
Michael R. Verneris ◽  
Michael H. Bachmann ◽  
Christopher H. Contag ◽  
...  

Cancer therapeutics have achieved success in the treatment of a variety of malignancies, however, relapse of disease from small numbers of persistent tumor cells remains a major obstacle. Advancement of treatment regimens that effectively control minimal residual disease and prevent relapse would be greatly accelerated if sensitive and noninvasive assays were used to quantitatively assess tumor burden in animal models of minimal residual disease that are predictive of the human response. In vivo bioluminescence imaging (BLI) is an assay for the detection of small numbers of cells noninvasively and enables the quantification of tumor growth within internal organs. Fusion genes that encode bioluminescent and fluorescent reporter proteins effectively couple the powerful in vivo capabilities of BLI with the subset-discriminating capabilities of fluorescence-activated cell sorting. We labeled 2 murine lymphoma cell lines with dual function reporter genes and monitored radiation and chemotherapy as well as immune-based strategies that employ the tumorcidal activity of ex vivo–expanded CD8+ natural killer (NK)–T cells. Using BLI we were able to visualize the entire course of malignant disease including engraftment, expansion, metastasis, response to therapy, and unique patterns of relapse. We also labeled the effector NK-T cells and monitored their homing to the sites of tumor growth followed by tumor eradication. These studies reveal the efficacy of immune cell therapies and the tempo of NK-T cell trafficking in vivo. The complex cellular processes in bone marrow transplantation and antitumor immunotherapy, previously inaccessible to investigation, can now be revealed in real time in living animals.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3066-3066
Author(s):  
Michael P. Rettig ◽  
Julie K. Ritchey ◽  
Julie L. Prior ◽  
David Piwnica-Worms ◽  
Mark L. Bonyhadi ◽  
...  

Abstract Herpes simplex virus thymidine kinase (TK) gene-modified T cells are currently being evaluated in gene therapy clinical trials for the control of graft-versus-host disease (GVHD) after allogeneic BMT. Unfortunately, these trials have been limited by a consistent failure of the ex-vivo manipulated T cells to survive and function properly in vivo. We recently developed a technique for retrovirally transducing and selecting murine T cells with a novel chimeric CD34-TK fusion suicide gene that preserves their alloreactivity after allogeneic BMT. In this study, we assessed the trafficking, survival, and GVHD-inducing potential of ex vivo manipulated murine T-cells in fully allogeneic transplant recipients by in vivo bioluminescence imaging (BLI) with two novel reporter vectors. The first vector encodes a fusion protein comprised of click beetle red (CBR) luciferase and EGFP (CBR/EGFP). In the second vector, we inserted a click beetle green (CBG) luciferase between CD34 and TK in our chimeric suicide gene (CD34/CBG/TK). Murine T cells, stimulated 24 h with anti-CD3 and anti-CD28 antibody-coated magnetic beads (CD3/CD28 beads), were transduced with Phoenix-Eco-derived CBR/EGFP or CD34/CBG/TK retrovirus and purified to >85% using a MoFlo cell sorter or CD34 immunomagnetic selection 48 h post-infection. To induce GVHD, lethally irradiated BALB/c allogeneic recipients were given T cell depleted C57BL/6 (B6) bone marrow supplemented with either 1e6 CBR/EGFP or CD34/CBG/TK purified B6 T cells. The CBR/EGFP BLI signal was significantly increased over background at 24 h post-injection, with the allogeneic T cells localizing primarily to the spleen and secondary lymph nodes. Over the next 2–3 days the CBR/EGFP+ cells migrated to the entire intestinal area followed rapidly by infiltration of the skin. Overall, the CBR/EGFP BLI signal increased nearly 3 orders of magnitude between days 1 and 8 post-BMT, remained steady for a week, and then only gradually declined over the next month (only a 3-fold decrease between days 14 to 42 post-BMT). Consistent with GVHD, these mice lost >20% of their pretransplant body weight and exhibited impaired lymphoid reconstitution. We observed similar trafficking and GVHD-inducing potential when CD34/CBG/TK gene-modified T cells were injected into BALB/c recipients. However, the maximum BLI signal intensity from the CD34/CBG/TK T cells was decreased nearly 2 orders of magnitude compared to the CBR/EGFP-modified T cells. Nevertheless, we were still able to demonstrate a significant reduction in BLI signal intensity when recipients of CD34/CBG/TK-modified allogeneic T cells were treated with ganciclovir (GCV) from days 1 to 7 post-BMT. This observation is consistent with in vitro cell sensitivity assays, which demonstrated that cells modified with the CD34/CBG/TK reporter gene retain TK activity similar to CD34-TK modified cells. In summary, this study demonstrated by in vivo BLI that allogeneic murine T cells activated and expanded ex vivo with CD3/CD28 beads retain significant GVHD-inducing potential and can be eliminated by HSV-TK/GCV suicide gene therapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A471-A471
Author(s):  
Lucas Horn ◽  
Linjie Tian ◽  
Dallas Flies ◽  
Linda Liu ◽  
Solomon Langermann ◽  
...  

BackgroundLAIR-1 is an immune inhibitory receptor expressed on several immune cell types including activated T cells, B cells, NK cells, macrophages, and dendritic cells. The ligands for LAIR-1 contain collagen-like domains which are commonly found in extracellular matrix collagens and complement component C1q. In numerous cancer types, including gastric, colon, ovarian, bladder, and others, upregulation of collagens has been shown to enhance tumor growth, metastases, and invasion while actively suppressing antitumor immunity. Although humans produce a natural, soluble decoy, LAIR-2, that competes with LAIR-1 for binding of collagen domains, excess LAIR ligands in the tumor often result in an immune suppressive environment.MethodsHere, we report on a novel immunotherapy approach which combined NC410, a LAIR-2-Fc fusion protein capable of blocking LAIR-1 signaling, and bintrafusp alfa, a first-in-class bifunctional fusion protein composed of the extracellular domain of the human transforming growth factor β receptor II (TGF-βRII or TGF-β ‘trap’) fused via a flexible linker to the C-terminus of each heavy chain of an IgG1 antibody blocking programmed death ligand 1 (anti–PD-L1).ResultsWe demonstrate that the combination of NC410 and bintrafusp alfa more effectively controls in vivo tumor growth of the collagen rich MC38 colon carcinoma compared to either monotherapy. We hypothesize that this potent anti-tumor immune response is propagated through the synergy of activated tumor infiltrating lymphocytes and a repolarization of macrophages towards a tumoricidal phenotype. MC38 tumors treated with the combination of NC410/Bintrafusp alfa contained higher numbers of infiltrating CD4+ and CD8+ T cells and higher numbers of CD38+ and MHCII+ M1 polarized macrophages.ConclusionsThis study highlights the synergy of reshaping the large suppressive myeloid cell populations often present in tumors with activation of adaptive T-cell immune responses dampened by checkpoint inhibition. The results also provide the rationale for the future evaluation of this combination therapy in the clinic.AcknowledgementsBintrafusp alfa was kindly provided by EMD Serono under a CRADA with the NCI.Trial RegistrationN/AEthics ApprovalMice were maintained under pathogen-free conditions in accordance with the Association for Assessment and Accreditation of Laboratory Animal Care guidelines. All animal studies were approved by the NIH Intramural Animal Care and Use Committee under protocol LTIB-038.ConsentN/A


2002 ◽  
Vol 87 (S39) ◽  
pp. 239-248 ◽  
Author(s):  
Stefanie Mandl ◽  
Christoph Schimmelpfennig ◽  
Matthias Edinger ◽  
Robert S. Negrin ◽  
Christopher H. Contag

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Saeed S. Akhand ◽  
Hao Chen ◽  
Stephen Connor Purdy ◽  
Zian Liu ◽  
Joshua C. Anderson ◽  
...  

AbstractTrastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) that efficiently delivers a highly potent microtubule inhibitor to HER2 overexpressing cells. Herein, we utilize HER2 transformed human mammary epithelial cells (HME2) to demonstrate in vitro and in vivo response and recurrence upon T-DM1 treatment. Continuous in vitro dosing of HME2 cells with T-DM1 failed to produce a spontaneously resistant cell line. However, induction of epithelial–mesenchymal transition (EMT) via pretreatment with TGF-β1 was capable of promoting emergence of T-DM1-resistant (TDM1R) cells. Flow cytometric analyses indicated that induction of EMT decreased trastuzumab binding, prior to overt loss of HER2 expression in TDM1R cells. Kinome analyses of TDM1R cells indicated increased phosphorylation of ErbB1, ErbB4, and FGFR1. TDM1R cells failed to respond to the ErbB kinase inhibitors lapatinib and afatinib, but they acquired sensitivity to FIIN4, a covalent FGFR kinase inhibitor. In vivo, minimal residual disease (MRD) remained detectable via bioluminescent imaging following T-DM1-induced tumor regression. Upon cessation of the ADC, relapse occurred and secondary tumors were resistant to additional rounds of T-DM1. These recurrent tumors could be inhibited by FIIN4. Moreover, ectopic overexpression of FGFR1 was sufficient to enhance tumor growth, diminish trastuzumab binding, and promote recurrence following T-DM1-induced MRD. Finally, patient-derived xenografts from a HER2+ breast cancer patient who had progressed on trastuzumab failed to respond to T-DM1, but tumor growth was significantly inhibited by FIIN4. Overall, our studies strongly support therapeutic combination of TDM1 with FGFR-targeted agents in HER2+ breast cancer.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Yusuke Inoue ◽  
Shigeru Kiryu ◽  
Makoto Watanabe ◽  
Arinobu Tojo ◽  
Kuni Ohtomo

The peak signal or the signal at a predetermined, fixed time point afterD-luciferin injection may be used for the quantitative analysis of in vivo bioluminescence imaging. We repeatedly performed sequential bioluminescence imaging after subcutaneous injection ofD-luciferin in mice bearing subcutaneous tumors. The peak time in each measurement became shorter early after cell inoculation, presumably due to gradual establishment of intratumoral vasculature, and reached a plateau of about 10 min on day 10. Although the correlation between the signal at a fixed time point and the peak signal was high, the signal at 5 or 10 min normalized for the peak signal was lower for earlier days, which caused overestimation of tumor growth. The time course of the signals afterD-luciferin injection may vary with time after cell inoculation, and this variation should be considered when determining the imaging protocol for quantitative bioluminescence tumor monitoring.


2020 ◽  
Vol 20 (9) ◽  
pp. 1147-1156
Author(s):  
Hanrui Li ◽  
GeTao Du ◽  
Lu Yang ◽  
Liaojun Pang ◽  
Yonghua Zhan

Background: Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. Objective: Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. Methods: BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. Results: The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. Conclusion: A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A873-A873
Author(s):  
Arika Feils ◽  
Mackenzie Heck ◽  
Anna Hoefges ◽  
Peter Carlson ◽  
Luke Zangl ◽  
...  

BackgroundMice bearing B78 melanoma tumors can be cured using an in situ vaccine (ISV) regimen that includes radiation (RT) together with immunocytokine (tumor-targeting mAb conjugated to IL-2). B78 melanoma cells, derived from B16 cells, express minimal to no MHC-I but express MHC-II upon IFN-g/TNF-a stimulation. Although B78 cells are primarily MHC-I-deficient, an increased CD8 T cell infiltration into the tumor microenvironment (TME) has been shown following ISV.1 To further investigate the potential role of specific immune cell lineages in the B78 anti-tumor response to ISV, immune subset depletion studies and flow cytometric analyses were performed.MethodsC57BL/6 mice bearing B78 tumors were depleted of immune cell subsets with mAbs (anti-CD4, anti-CD8, anti-NK1.1, or Rat IgG control) for 3 weeks during the course of treatment. Treatment groups included no treatment, RT (12 Gy), or ISV (RT D0 and immunocytokine D5-D9). 6 mice/group (repeated three times) were followed for survival/tumor growth, and flow cytometry studies included 4 mice/group, sacrificed on D8 and D13 following the start of ISV.ResultsMice depleted of CD4 T cells during the course of ISV showed a significant reduction of anti-tumor effect as compared to mice treated with ISV/Rat IgG (pConclusionsThese studies suggest that CD4 T cells are essential for an anti-tumor response in the B78 melanoma model. In vivo depletion data show that CD4 T cells, but not CD8 or NK cells, are required for a decrease in tumor growth via ISV. Flow cytometric analyses suggest an interplay between CD4 and CD8 T cells as indicated by a decrease in CD8/IFN-g expression following ISV in the absence of CD4 T cells. The role that MHC-I and MHC-II expression plays in this CD4/CD8 T cell anti-tumor response is under investigation. In future studies, B78 melanoma may serve as a critical syngeneic model for development of more effective immunotherapy treatment regimens.Ethics ApprovalAll animal experiments were performed in accordance with protocols approved by Animal Care and Use Committees of the University of Wisconsin-Madison.ReferenceMorris Z, Guy E, Francis D, et al. In situ tumor vaccination by combining local radiation and tumor-specific antibody or immunocytokine treatments. Cancer Res 2016;76(13):3929-3941.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A126-A126
Author(s):  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Wen-I Yeh ◽  
Yijia Pan ◽  
...  

BackgroundMHC class I related proteins A (MICA) and B (MICB) are induced by cellular stress and transformation, and their expression has been reported for many cancer types. NKG2D, an activating receptor expressed on natural killer (NK) and T cells, targets the membrane-distal domains of MICA/B, activating a potent cytotoxic response. However, advanced cancer cells frequently evade immune cell recognition by proteolytic shedding of the α1 and α2 domains of MICA/B, which can significantly reduce NKG2D function and the cytolytic activity.MethodsRecent publications have shown that therapeutic antibodies targeting the membrane-proximal α3 domain inhibited MICA/B shedding, resulting in a substantial increase in the cell surface density of MICA/B and restoration of immune cell-mediated tumor immunity.1 We have developed a novel chimeric antigen receptor (CAR) targeting the conserved α3 domain of MICA/B (CAR-MICA/B). Additionally, utilizing our proprietary induced pluripotent stem cell (iPSC) product platform, we have developed multiplexed engineered, iPSC-derived CAR-MICA/B NK (iNK) cells for off-the-shelf cancer immunotherapy.ResultsA screen of CAR spacer and ScFv orientations in primary T cells delineated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control against MICA+ cancer cells. The novel CAR-MICA/B design was used to compare efficacy against NKG2D CAR T cells, an alternative MICA/B targeting strategy. CAR-MICA/B T cells showed superior cytotoxicity against melanoma, breast cancer, renal cell carcinoma, and lung cancer lines in vitro compared to primary NKG2D CAR T cells (p<0.01). Additionally, using an in vivo xenograft metastasis model, CAR-MICA/B T cells eliminated A2058 human melanoma metastases in the majority of the mice treated. In contrast, NKG2D CAR T cells were unable to control tumor growth or metastases. To translate CAR-MICA/B functionality into an off-the-shelf cancer immunotherapy, CAR-MICA/B was introduced into a clonal master engineered iPSC line to derive a multiplexed engineered, CAR-MICA/B iNK cell product candidate. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iNK cells displayed MICA specificity, resulting in enhanced cytokine production, degranulation, and cytotoxicity. Furthermore, in vivo NK cell cytotoxicity was evaluated using the B16-F10 melanoma cell line, engineered to express MICA. In this model, CAR-MICA/B iNK cells significantly reduced liver and lung metastases, compared to untreated controls, by 93% and 87% respectively.ConclusionsOngoing work is focused on extending these preclinical studies to further support the clinical translation of an off-the-shelf, CAR-MICA/B iNK cell cancer immunotherapy with the potential to overcome solid tumor escape from NKG2D-mediated mechanisms of recognition and killing.ReferenceFerrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, Kobold S, Pyrdol JW, Yoon C, Yuan GC, Hodi FS, Dranoff G, Wucherpfennig KW. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018 Mar 30;359(6383):1537–1542.


Sign in / Sign up

Export Citation Format

Share Document