scholarly journals Selective inhibition of the PI3K isoform p110alpha using BYL719 protects against tyrosine kinase-mediated processes in PASMCs and reduces experimental pulmonary hypertension in mice and rats

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
E Berghausen ◽  
M Krause ◽  
L Feik ◽  
M Vantler ◽  
S Baldus ◽  
...  

Abstract Rationale Pulmonary arterial hypertension (PAH) is a vascular disease characterized by chronic increases in pulmonary vascular resistance (PVR), pulmonary arterial pressure (PAP), and right ventricular (RV) hypertrophy. Increased activation of receptor tyrosine kinase (RTK) -mediated signaling pathways leads to increased proliferation and migration of pulmonary smooth vascular muscle cells (PASMCs) which promote vascular remodeling processes. We identified the catalytic subunit p110alpha of phosphatidylinositol-3-kinase as a key enzyme for these processes and showed that both genetic ablation of p110alpha in SMCs and pharmacological inhibition can prevent experimental PH. Here, the effects of the orally bioavailable p110alpha selective PI3K inhibitor BYL719 on the RTK-mediated proliferation and chemotaxis of PASMCs, as well as the effects in the hypoxia-induced mouse and in the Sugen / hypoxia (SuHx) -induced rat model of PH were investigated. Methods Human and murine PASMCs were pretreated with different concentrations of BYL719 and stimulated with a mixture of growth factors (PDGF [30ng/ml], EGF [0,5ng/ml], bFGF [2ng/ml], insulin [0,5ng/ml], and FBS [5%]). Proliferation was investigated using a BrdU incorporation ELISA assay (Roche). Chemotaxis was quantified using modified Boyden chambers. Male BL/6 mice were subjected to hypoxia (10% O2) for 21 days. Treatment with BYL719 (or vehicle) was carried out via daily gavage of 50mg/kg bodyweight. In addition, a therapeutic approach was investigated using male Sprague Dawley rats in the SuHx model, which were treated with BYL719 (20 mg / kg body weight) or vehicle for 2 weeks after a three-week hypoxia phase. The RV pressure (RVSP) was measured using a Millar® or liquid-filled catheter. The RV hypertrophy is shown as the quotient of the weights of the RV to the LV + septum (RV / (LV + S)). Results Growth factor-induced proliferation and chemotaxis of the PASMCs were significantly and concentration-dependently inhibited by BYL719. The exposure to hypoxia led to an increase of the RVSP (24.5±0.95 to 35.2±1.28 mmHg) and the development of right ventricular hypertrophy (RV / LV + S 0.24±0.01 to 0.37±0.073), which was significantly reduced in the BYL719 treated group (RVSP 31.4±0.53 mmHg; RV / LV + S 0.31±0.01) (p<0.05). In addition, SuHx led to a robust increase of the RVSP (129.2±5.4 mmHg) and pronounced RV hypertrophy (RV / (LV + S): 0.86±0.04), which were significantly reduced by the therapeutic BYL719 treatment (102.0±6.1 mmHg or 0.64±0.03). Conclusion These results show that inhibition of p110alpha using the BYL719 reduced growth factor-mediated pathological processes in PASMCs in vitro, as well as hypoxia-induced (mouse) and already established SuHx-induced PH (rat). Thus, the inhibition of p110a using BYL719 represents a promising approach for the treatment of PAH. FUNDunding Acknowledgement Type of funding sources: None.

Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 655-660 ◽  
Author(s):  
Eline Menu ◽  
Helena Jernberg-Wiklund ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Leonard Girnita ◽  
...  

AbstractInsulin-like growth factor 1 (IGF-1) plays a pleiotropic role in multiple myeloma (MM), that is, in survival, proliferation, chemotaxis, and angiogenesis. Strategies targeting the IGF-1 receptor (IGF-1R) may therefore be important to develop efficient anti-MM agents. In this work we investigated the effect of an IGF-1R tyrosine kinase (IGF-1RTK) inhibitor (picropodophyllin or PPP) in the 5T33MM mouse model. In vitro data showed that PPP reduced IGF-1R autophosphorylation and downstream ERK activation, leading to inhibition of IGF-1–stimulated proliferation and vascular endothelial growth factor (VEGF) secretion of MM cells. In an in vivo study, PPP reduced the bone marrow tumor burden and serum paraprotein in 5T33MM mice by 77% and 90%, respectively, compared to vehicle-treated animals. Angiogenesis was assessed by quantifying the microvessel density on CD31-stained paraffin sections and this was reduced by 60% in the PPP-treated group. In a separate survival experiment, Kaplan-Meier analysis demonstrated a significant increase in survival in PPP-treated 5T33MM animals compared to the vehicle controls (28 versus 18 days). These data suggest that the IGF-1RTK inhibitor PPP possesses a marked antitumor activity and strongly points to the possibility of using IGF-1R inhibitors in the treatment of MM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minyi Fu ◽  
Fangmei Luo ◽  
Eli Wang ◽  
Yueping Jiang ◽  
Shao Liu ◽  
...  

Right ventricular (RV) remodeling is one of the essential pathological features in pulmonary arterial hypertension (PAH). RV hypertrophy or fibrosis are the leading causes of RV remodeling. Magnolol (6, 6′, 7, 12-tetramethoxy-2,2′-dimethyl-1-β-berbaman, C18H18O2) is a compound isolated from Magnolia Officinalis. It possesses multiple pharmacological activities, such as anti-oxidation and anti-inflammation. This study aims to evaluate the effects and underlying mechanisms of magnolol on RV remodeling in hypoxia-induced PAH. In vivo, male Sprague Dawley rats were exposed to 10% O2 for 4 weeks to establish an RV remodeling model, which showed hypertrophic and fibrotic features (increases of Fulton index, cellular size, hypertrophic and fibrotic marker expression), accompanied by an elevation in phosphorylation levels of JAK2 and STAT3; these changes were attenuated by treating with magnolol. In vitro, the cultured H9c2 cells or cardiac fibroblasts were exposed to 3% O2 for 48 h to induce hypertrophy or fibrosis, which showed hypertrophic (increases in cellular size as well as the expression of ANP and BNP) or fibrotic features (increases in the expression of collagen Ⅰ, collagen Ⅲ, and α-SMA). Administration of magnolol and TG-101348 or JSI-124 (both JAK2 selective inhibitors) could prevent myocardial hypertrophy and fibrosis, accompanied by the decrease in the phosphorylation level of JAK2 and STAT3. Based on these observations, we conclude that magnolol can attenuate RV hypertrophy and fibrosis in hypoxia-induced PAH rats through a mechanism involving inhibition of the JAK2/STAT3 signaling pathway. Magnolol may possess the potential clinical value for PAH therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyeon Oh ◽  
Albert Y. Jang ◽  
Sehyun Chae ◽  
Seungbum Choi ◽  
Jeongsik Moon ◽  
...  

AbstractDespite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amritha Vijayan ◽  
Sabareeswaran A. ◽  
G. S. Vinod Kumar

AbstractApplication of growth factors at wound site has improved the efficiency and quality of healing. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) induce proliferation of various cells in wound healing. Delivery of growth factor from controlled release systems protect it from degradation and also result in sustained delivery of it at the site of injury. The goal of the study was to develop a Polyethylene glycol (PEG) cross-linked cotton-like chitosan scaffold (CS-PEG-H) by freeze-drying method and chemically conjugate heparin to the scaffold to which the growth factors can be electrostatically bound and evaluate its wound healing properties in vitro and in vivo. The growth factor containing scaffolds induced increased proliferation of HaCaT cells, increased neovascularization and collagen formation seen by H and E and Masson’s trichrome staining. Immunohistochemistry was performed using the Ki67 marker which increased proliferation of cells in growth factor containing scaffold treated group. Frequent dressing changes are a major deterrent to proper wound healing. Our system was found to release both VEGF and bFGF in a continuous manner and attained stability after 7 days. Thus our system can maintain therapeutic levels of growth factor at the wound bed thereby avoiding the need for daily applications and frequent dressing changes. Thus, it can be a promising candidate for wound healing.


2020 ◽  
Vol 40 (9) ◽  
pp. 2293-2309 ◽  
Author(s):  
Avinash Khandagale ◽  
Mikael Åberg ◽  
Gerhard Wikström ◽  
Sara Bergström Lind ◽  
Ganna Shevchenko ◽  
...  

Objective: Extracellular vesicles (EVs) have the potential to act as intercellular communicators. The aims were to characterize circulating EVs in patients with pulmonary arterial hypertension (PAH) and to explore whether these EVs contribute to endothelial activation and angiogenesis. Approach and Results: Patients with PAH (n=70) and healthy controls (HC; n=20) were included in this cross-sectional study. EVs were characterized and human pulmonary endothelial cells (hPAECs) were incubated with purified EVs. Endothelial cell activity and proangiogenic markers were analyzed. Tube formation analysis was performed for hPAECs, and the involvement of PSGL-1 (P-selectin glycoprotein ligand 1) was evaluated. The numbers of CD62P + , CD144 + , and CD235a EVs were higher in blood from PAH compared with HC. Thirteen proteins were differently expressed in PAH and HC EVs, where complement fragment C1q was the most significantly elevated protein ( P =0.0009) in PAH EVs. Upon EVs-internalization in hPAECs, more PAH compared with HC EVs evaded lysosomes ( P <0.01). As oppose to HC, PAH EVs stimulated hPAEC activation and induced transcription and translation of VEGF-A (vascular endothelial growth factor A; P <0.05) and FGF (fibroblast growth factor; P <0.005) which were released in the cell supernatant. These proangiogenic proteins were higher in patient with PAH plasma compered with HC. PAH EVs induced a complex network of angiotubes in vitro, which was abolished by inhibitory PSGL-1antibody. Anti-PSGL-1 also inhibited EV-induced endothelial cell activation and PAH EV dependent increase of VEGF-A. Conclusions: Patients with PAH have higher levels of EVs harboring increased amounts of angiogenic proteins, which induce activation of hPAECs and in vitro angiogenesis. These effects were partly because of platelet-derived EVs evasion of lysosomes upon internalization within hPAEC and through possible involvement of P-selectin-PSGL-1 pathway.


2020 ◽  
Vol 10 (5) ◽  
pp. 315
Author(s):  
Rafael Gonzalo-Gobernado ◽  
Diana Reimers ◽  
María José Casarejos ◽  
Lucía Calatrava Ferreras ◽  
Manuela Vallejo-Muñoz ◽  
...  

Parkinson’s disease is a neurodegenerative disorder characterized by the progressive death of dopaminergic (DA) neurons in the substantia nigra (SN), which leads to a loss of the neurotransmitter dopamine in the basal ganglia. Current treatments relieve the symptoms of the disease, but none stop or delay neuronal degeneration. Liver growth factor (LGF) is an albumin–bilirubin complex that stimulates axonal growth in the striatum and protects DA neurons in the SN of 6-hydroxydopamine-lesioned rats. Our previous results suggested that these effects observed in vivo are mediated by microglia and/or astrocytes. To determine if these cells are LGF targets, E14 (embryos from Sprague Dawley rats of 14 days) rat mesencephalic glial cultures were used. Treatment with 100 pg/mL of LGF up-regulated the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases 1/2 (ERK1/2) and the cyclic AMP response element binding protein (CREB) phosphorylation in glial cultures, and it increased the microglia marker Iba1 and tumor necrosis factor alpha (TNF-alpha) protein levels. The treatment of E14 midbrain neurons with a glial-conditioned medium from LGF-treated glial cultures (GCM-LGF) prevented the loss of DA neurons caused by 6-hydroxy-dopamine. This neuroprotective effect was not observed when GCM-LGF was applied in the presence of a blocking antibody of TNF-alpha activity. Altogether, our findings strongly suggest the involvement of microglia and TNF-alpha in the neuroprotective action of LGF on DA neurons observed in vitro.


1997 ◽  
Vol 82 (2) ◽  
pp. 592-598 ◽  
Author(s):  
Richard H. Turnage ◽  
John L. Lanoue ◽  
Kevin M. Kadesky ◽  
Yan Meng ◽  
Stuart I. Myers

Turnage, Richard H., John L. LaNoue, Kevin M. Kadesky, Yan Meng, and Stuart I. Myers. Thromboxane A2 mediates increased pulmonary microvascular permeability after intestinal reperfusion. J. Appl. Physiol. 82(2): 592–598, 1997.—This study examines the hypothesis that intestinal reperfusion (IR)-induced pulmonary thromboxane A2(TxA2) release increases local microvascular permeability and induces pulmonary vasoconstriction. Sprague-Dawley rats underwent 120 min of intestinal ischemia and 60 min of IR. Sham-operated animals (Sham) served as controls. After IR or Sham, the pulmonary vessels were cannulated, and the lungs were perfused in vitro with Krebs buffer. Microvascular permeability was quantitated by determining the filtration coefficient ( K f), and pulmonary arterial (Ppa), venous (Ppv), and capillary (Ppc) pressures were measured to calculate vascular resistance (Rt). After baseline measurements, imidazole (TxA2 synthase inhibitor) or SQ-29,548 (TxA2-receptor antagonist) was added to the perfusate; then K f, Ppa, Ppv, and Ppc were again measured. The K fof lungs from IR animals was four times greater than that of Sham ( P = 0.001), and Rt was 63% greater in the injured group ( P = 0.01). Pc of IR lungs was twice that of controls (5.4 ± 1.0 vs. 2.83 ± 0.3 mmHg, IR vs. Sham, respectively; P < 0.05). Imidazole or SQ-29,548 returned K fto baseline measurements ( P < 0.05) and reduced Rt by 23 and 17%, respectively ( P < 0.05). IR-induced increases in Pc were only slightly reduced by 500 μg/ml imidazole (14%; P = 0.05) but unaffected by lower doses of imidazole (5 or 50 μg/ml) or SQ-29,548. These data suggest that IR-induced pulmonary edema is caused by both increased microvascular permeability and increased hydrostatic pressure and that these changes are due, at least in part, to the ongoing release of TxA2.


1993 ◽  
Vol 123 (1) ◽  
pp. 223-235 ◽  
Author(s):  
E Sonnenberg ◽  
D Meyer ◽  
K M Weidner ◽  
C Birchmeier

Scatter factor/hepatocyte growth factor (SF/HGF) has potent motogenic, mitogenic, and morphogenetic activities on epithelial cells in vitro. The cell surface receptor for this factor was recently identified: it is the product of the c-met protooncogene, a receptor-type tyrosine kinase. We report here the novel and distinct expression patterns of SF/HGF and its receptor during mouse development, which was determined by a combination of in situ hybridization and RNase protection experiments. Predominantly, we detect transcripts of c-met in epithelial cells of various developing organs, whereas the ligand is expressed in distinct mesenchymal cells in close vicinity. In addition, transient SF/HGF and c-met expression is found at certain sites of muscle formation; transient expression of the c-met gene is also detected in developing motoneurons. SF/HGF and the c-met receptor might thus play multiple developmental roles, most notably, mediate a signal given by mesenchyme and received by epithelial. Mesenchymal signals are known to govern differentiation and morphogenesis of many epithelia, but the molecular nature of the signals has remained poorly understood. Therefore, the known biological activities of SF/HGF in vitro and the embryonal expression pattern reported here indicate that this mesenchymal factor can transmit morphogenetic signals in epithelial development and suggest a molecular mechanism for mesenchymal epithelial interactions.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Weifeng Zou ◽  
Fang He ◽  
Sha Liu ◽  
Jinding Pu ◽  
Jinxing Hu ◽  
...  

Background. The aim of the present study was to test whether fine particulate matter (PM2.5) induces the expression of platelet-derived growth factor-AB (PDGF-AB), PDGF-BB, and transforming growth factor-β1 (TGF-β1) in human bronchial epithelial cells (HBECs) in vitro via high-mobility group box 1 (HMGB1) receptor for advanced glycation end products (RAGE) signaling.Methods. Sprague-Dawley rats were exposed to motor vehicle exhaust (MVE) or clean air. HBECs were either transfected with a small interfering RNA (siRNA) targeting HMGB1 or incubated with anti-RAGE antibodies and subsequently stimulated with PM2.5.Results. The expression of HMGB1 and RAGE was elevated in MVE-treated rats compared with untreated rats, and PM2.5 increased the secretion of HMGB1 and upregulated RAGE expression and the translocation of nuclear factor κB (NF-κB) into the nucleus of HBECs. This activation was accompanied by an increase in the expression of PDGF-AB, PDGF-BB, and TGF-β1. The HMGB1 siRNA prevented these effects. Anti-RAGE antibodies attenuated the activation of NF-κB and decreased the secretion of TGF-β1, PDGF-AB, and PDGF-BB from HBECs.Conclusion. PM2.5 induces the expression of TGF-β1, PDGF-AB, and PDGF-BB in vitro via HMGB1-RAGE signaling, suggesting that this pathway may contribute to the airway remodeling observed in patients with COPD.


Sign in / Sign up

Export Citation Format

Share Document