Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia

Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2182-2189 ◽  
Author(s):  
Phil J. Ancliff ◽  
Michael P. Blundell ◽  
Giles O. Cory ◽  
Yolanda Calle ◽  
Austen Worth ◽  
...  

Abstract Severe congenital neutropenia (SCN) is characterized by neutropenia, recurrent bacterial infections, and maturation arrest in the bone marrow. Although many cases have mutations in the ELA2 gene encoding neutrophil elastase, a significant proportion remain undefined at a molecular level. A mutation (Leu270Pro) in the gene encoding the Wiskott-Aldrich syndrome protein (WASp) resulting in an X-linked SCN kindred has been reported. We therefore screened the WAS gene in 14 young SCN males with wild-type ELA2 and identified 2 with novel mutations, one who presented with myelodysplasia (Ile294Thr) and the other with classic SCN (Ser270Pro). Both patients had defects of immunologic function including a generalized reduction of lymphoid and natural killer cell numbers, reduced lymphocyte proliferation, and abrogated phagocyte activity. In vitro culture of bone marrow progenitors demonstrated a profound reduction in neutrophil production and increased levels of apoptosis, consistent with an intrinsic disturbance of normal myeloid differentiation as the cause of the neutropenia. Both mutations resulted in increased WASp activity and produced marked abnormalities of cytoskeletal structure and dynamics. Furthermore, these results also suggest a novel cause of myelodysplasia and that male children with myelodysplasia and disturbance of immunologic function should be screened for such mutations.

Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3774-3784 ◽  
Author(s):  
F Morel ◽  
SJ Szilvassy ◽  
M Travis ◽  
B Chen ◽  
A Galy

The CD34 antigen is expressed on most, if not all, human hematopoietic stem cells (HSCs) and hematopoietic progenitor cells, and its use for the enrichment of HSCs with repopulating potential is well established. However, despite homology between human and murine CD34, its expression on subsets of primitive murine hematopoietic cells has not been examined in full detail. To address this issue, we used a novel monoclonal antibody against murine CD34 (RAM34) to fractionate bone marrow (BM) cells that were then assayed in vitro and in vivo with respect to differing functional properties. A total of 4% to 17% of murine BM cells expressed CD34 at intermediate to high levels, representing a marked improvement over the resolution obtained with previously described polyclonal anti-CD34 antibodies. Sixty percent of CD34+ BM cells lacked lineage (Lin) markers expressed on mature lymphoid or myeloid cells. Eighty-five percent of Sca-1+Thy-1(10)Lin- /10 cells that are highly enriched in HSCs expressed intermediate, but not high, levels of CD34 antigen. The remainder of these phenotypically defined stem cells were CD34-. In vitro colony-forming cells, day-8 and -12 spleen colony-forming units (CFU-S), primitive progenitors able to differentiate into B lymphocytes in vitro or into T lymphocytes in SCID mice, and stem cells with radioprotective and competitive long-term repopulating activity were all markedly enriched in the CD34+ fraction after single-parameter cell sorting. In contrast, CD34-BM cells were depleted of such activities at the cell doses tested and were capable of only short-term B-cell production in vitro. The results indicate that a significant proportion of murine HSCs and multilineage progenitor cells express detectable levels of CD34, and that the RAM34 monoclonal antibody is a useful tool to subset primitive murine hematopoietic cells. These findings should facilitate more direct comparisons of the biology of CD34+ murine and human stem and progenitor cells.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2633-2639 ◽  
Author(s):  
Atsushi Oda ◽  
Hans D. Ochs ◽  
Laurence A. Lasky ◽  
Susan Spencer ◽  
Katsutoshi Ozaki ◽  
...  

Abstract Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia are caused by mutations of the WAS protein (WASP) gene. WASP may be involved in the regulation of podosome, an actin-rich dynamic cell adhesion structure formed by various types of cells. The molecular links between WASP and podosomes or other cell adhesion structures are unknown. Platelets express an SH2-SH3 adapter molecule, CrkL, that can directly associate with paxillin, which is localized in podosomes. The hypothesis that CrkL binds to WASP was, therefore, tested. Results from coprecipitation experiments using anti-CrkL and GST-fusion proteins suggest that CrkL binds to WASP through its SH3 domain and that the binding was not affected by WASP tyrosine phosphorylation. The binding of GST-fusion SH3 domain of PSTPIP1 in vitro was also not affected by WASP tyrosine phosphorylation, suggesting that the binding of the SH3 domains to WASP is not inhibited by tyrosine phosphorylation of WASP. Anti-CrkL also coprecipitates a 72-kd protein, which was identified as syk tyrosine kinase, critical for collagen induced-platelet activation. CrkL immunoprecipitates contain kinase-active syk, as evidenced by an in vitro kinase assay. Coprecipitation experiments using GST-fusion CrkL proteins suggest that both SH2 and SH3 domains of CrkL are involved in the binding of CrkL to syk. WASP, CrkL, syk, and paxillin-like Hic-5 incorporated to platelet cytoskeleton after platelet aggregation. Thus, CrkL is a novel molecular adapter for WASP and syk and may potentially transfer these molecules to the cytoskeleton through association with cytoskeletal proteins such as Hic-5.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2317-2322 ◽  
Author(s):  
David C. Dale ◽  
Richard E. Person ◽  
Audrey Anna Bolyard ◽  
Andrew G. Aprikyan ◽  
Cindy Bos ◽  
...  

Abstract Congenital neutropenia and cyclic neutropenia are disorders of neutrophil production predisposing patients to recurrent bacterial infections. Recently the locus for autosomal dominant cyclic neutropenia was mapped to chromosome 19p13.3, and this disease is now attributable to mutations of the gene encoding neutrophil elastase (the ELA2 gene). The authors hypothesized that congenital neutropenia is also due to mutations of neutrophil elastase. Patients with congenital neutropenia, cyclic neutropenia, or Shwachman-Diamond syndrome were referred to the Severe Chronic Neutropenia International Registry. Referring physicians provided hematologic and clinical data. Mutational analysis was performed by sequencing polymerase chain reaction (PCR)-amplified genomic DNA for each of the 5 exons of the neutrophil ELA2 gene and 20 bases of the flanking regions. RNA from bone marrow mononuclear cells was used to determine if the affected patients expressed both the normal and the abnormal transcript. Twenty-two of 25 patients with congenital neutropenia had 18 different heterozygous mutations. Four of 4 patients with cyclic neutropenia and 0 of 3 patients with Shwachman-Diamond syndrome had mutations. For 5 patients with congenital neutropenia having mutations predicted to alter RNA splicing or transcript structure, reverse transcriptase-PCR showed expression of both normal and abnormal transcripts. In cyclic neutropenia, the mutations appeared to cluster near the active site of the molecule, whereas the opposite face was predominantly affected by the mutations found in congenital neutropenia. This study indicates that mutations of the gene encoding neutrophil elastase are probably the most common cause for severe congenital neutropenia as well as the cause for sporadic and autosomal dominant cyclic neutropenia.


1990 ◽  
Vol 172 (5) ◽  
pp. 1425-1431 ◽  
Author(s):  
L A Dent ◽  
M Strath ◽  
A L Mellor ◽  
C J Sanderson

Experiments in vitro suggest that although interleukin 5 (IL-5) stimulates the late stages of eosinophil differentiation, other cytokines are required for the generation of eosinophil progenitor cells. In this study transgenic mice constitutively expressing the IL-5 gene were established using a genomic fragment of the IL-5 gene coupled to the dominant control region from the gene encoding human CD2. Four independent eosinophilic transgenic lines have thus far been established, two of which with 8 and 49 transgene copies, are described in detail. These mice appeared macroscopically normal apart from splenomegaly. Eosinophils were at least 65- and 265-fold higher in blood from transgenics, relative to normal littermates, and approximately two- or sevenfold more numerous relative to blood from mice infected with the helminth Mesocestoides corti. Much more modest increases in blood neutrophil, lymphocyte, and monocyte numbers were noted in transgenics, relative to normal littermates (less than threefold). Thus IL-5 in vivo is relatively specific for the eosinophil lineage. Large numbers of eosinophils were present in spleen, bone marrow, and peritoneal exudate, and were highest in the line with the greatest transgene copy number. Eosinophilia was also noted in histological sections of transgenic lungs, Peyer's patches, mesenteric lymph nodes, and gut lamina propria but not in other tissues examined. IL-5 was detected in the sera of transgenics at levels comparable to those seen in sera from parasite-infected animals. IL-3 and granulocyte/macrophage colony-stimulating factor (GM-CSF) were not found. IL-5 mRNA was detected in transgenic thymus, Peyer's patches, and superficial lymph nodes, but not in heart, liver, brain, or skeletal muscle or in any tissues from nontransgenics. Bone marrow from transgenic mice was rich in IL-5-dependent eosinophil precursors. These data indicate that induction of the IL-5 gene is sufficient for production of eosinophilia, and that IL-5 can induce the full pathway of eosinophil differentiation. IL-5 may therefore not be restricted in action to the later stages of eosinophil differentiation, as suggested by earlier in vitro studies.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2830-2830
Author(s):  
Alix E. Seif ◽  
Marlo D. Bruno ◽  
Junior Hall ◽  
Valerie I. Brown ◽  
Stephan A. Grupp ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) accounts for 80% of all pediatric leukemias and is the most common form of childhood cancer. While most children with ALL are cured by current therapies, refractory and relapsed ALL comprise a significant proportion of all pediatric cancers. Furthermore, nearly half of all ALL diagnoses occur in adults, who carry a much poorer prognosis, with the majority dying of relapsed disease. Relapsed ALL generally requires intensive therapy with significant associated morbidity and mortality. Development of novel therapies is essential to improving outcomes. DNA oligodeoxynucleotides containing CpG motifs (CpG ODN) stimulate anti-tumor immune activity via Toll-like receptor 9 (TLR9) activation and are currently in clinical trials for a variety of solid tumors. We have previously reported that CpG ODN stimulation alters antigen presentation by human ALL cells, enhancing allogeneic Th1 responses. In addition, we have shown that CpG ODN administration in vivo reduces the leukemic burden of primary human ALL xenografts in Nod-SCID mice, and that this activity is mediated in part by NK cells. To further the development of CpG ODN as a novel therapeutic agent for ALL, we have investigated the induction of anti-ALL activity by CpG ODN in a syngeneic ALL setting. CpG ODN did not exhibit direct toxicity against cell lines derived from leukemic Eμ-ret transgenic mice in vitro, nor did it alter CD40 or CD86 expression or cytokine production. However, using a flow cytometry-based in vitro killing assay we observed CpG ODN-induced elimination of leukemia cells when cultured with splenocytes or bone marrow cells from Eμ-ret transgene-negative mice (P=0.0388). The difference between CpG ODN-treated and untreated controls became more pronounced with increasing effector:target ratios (P<0.0001). Preliminary data show that depletion of NK cells markedly decreases the magnitude of the observed effect, supporting the hypothesis that this cell type is involved in targeted control of ALL in this model. The ability of CpG ODN to exert anti-leukemia activity in a syngeneic setting suggests that it may have utility as an adjuvant therapy. To test this hypothesis we administered CpG ODN (or PBS) to syngeneic leukemia-bearing mice 2 days after completion of a chemotherapy regimen used to reduce leukemia burden. When mice were sacrificed 3 weeks after treatment, we found significantly reduced leukemia burden in bone marrow (P=0.0019), spleen (P<0.00001) and blood (P=0.00028) of CpG ODN-treated mice. Cell-depletion and cytokine-neutralization assays are currently ongoing to define the mechanism of action of CpG ODN in these settings. To our knowledge, this is the first demonstration of CpG ODN-induced anti-ALL activity in a post-chemotherapy syngeneic model, suggesting that this agent has the potential to treat minimal residual disease and to reduce the incidence of relapse.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1506-1506
Author(s):  
Marika Masselli ◽  
Serena Pillozzi ◽  
Massimo D'Amico ◽  
Luca Gasparoli ◽  
Olivia Crociani ◽  
...  

Abstract Abstract 1506 Although cure rates for children with acute lymphoblastic leukemia (ALL), the most common pediatric malignancy, have markedly improved over the last two decades, chemotherapy resistance remains a major obstacle to successful treatment in a significant proportion of patients (Pui CH et al. N Engl J Med., 360:2730–2741, 2009). Increasing evidence indicates that bone marrow mesenchymal cells (MSCs) contribute to generate drug resistance in leukemic cells (Konopleva M et al., Leukemia, 16:1713–1724, 2002). We contributed to this topic, describing a novel mechanism through which MSCs protect leukemic cells from chemotherapy (Pillozzi S. et al., Blood, 117:902–914, 2011.). This protection depends on the formation of a macromolecular membrane complex, on the plasma membrane of leukemic cells, the major players being i) the human ether-a-gò-gò-related gene 1 (hERG1) K+ channel, ii) the β1integrin subunit and iii) the SDF-1α receptor CXCR4. In leukemic blasts, the formation of this protein complex activates both the ERK 1/2 MAP kinases and the PI3K/Akt signalling pathways triggering antiapoptotic effects. hERG1 exerts a pivotal role in the complex, as clearly indicated by the effect of hERG1 inhibitors to abrogate MSCs protection against chemotherapeutic drugs. Indeed, E4031, a class III antiarrhythmic that specifically blocks hERG1, enhances the cytotoxicity of drugs commonly used to treat leukemia, both in vitro and in vivo. The latter was tested in a human ALL mouse model, consisting of NOD/SCID mice injected with REH cells, which are relatively resistant to corticosteroids. Mice were treated for 2 weeks with dexamethasone, E4031, or both. Treatment with dexamethasone and E4031 in combination nearly abolished bone marrow engraftment while producing marked apoptosis, and strongly reducing the proportion of leukemic cells in peripheral blood and leukemia infiltration of extramedullary sites. These effects were significantly superior to those obtained by treatment with either dexamethasone alone or E4031 alone. This model corroborated the idea that hERG1 blockers significantly increase the rate of leukemic cell apoptosis in bone marrow and reduced leukemic infiltration of peripheral organs. From a therapeutic viewpoint, to develop a pharmacological strategy based on hERG1 targeting we must consider to circumvent the side effects exerted by hERG1 blockers. Indeed, hERG1 blockers are known to retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, an effect that in some cases leads to life threatening ventricular arrhythmias (torsades de points). On the whole, it is mandatory to design and test non-cardiotoxic hERG1 blockers as a new strategy to overcome chemoresistance in ALL. On these bases, we tested compounds with potent anti-hERG1 effects, besides E4031, but devoid of cardiotoxicity (e.g. non-torsadogenic hERG1 blockers). Such compounds comprise erythromycin, sertindole and CD160130 (a newly developed drug by BlackSwanPharma GmbH, Leipzig, Germany). We found that such compounds exert a strong anti-leukemic activity both in vitro and in vivo, in the ALL mouse model described above. This is the first study describing the chemotherapeutic effects of non-torsadogenic hERG1 blockers in mouse models of human ALL. This work was supported by grants from the Associazione Genitori contro le Leucemie e Tumori Infantili Noi per Voi, Associazione Italiana per la Ricerca sul Cancro (AIRC) and Istituto Toscano Tumori. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 15 (10) ◽  
pp. 5725-5731 ◽  
Author(s):  
O M Rivero-Lezcano ◽  
A Marcilla ◽  
J H Sameshima ◽  
K C Robbins

In the second of a series of experiments designed to identify p47nck-Src homology 3 (SH3)-binding molecules, we report the cloning of SAKAP II (Src A box Nck-associated protein II) from an HL60 cDNA expression library. This molecule has been identified as a cDNA encoding the protein product of WASP, which is mutated in Wiskott-Aldrich syndrome patients. Studies in vivo and in vitro demonstrated a highly specific interaction between the SH3 domains of p47nck and Wiskott-Aldrich syndrome protein. Furthermore, anti-Wiskott-Aldrich syndrome protein antibodies recognized a protein of 66 kDa by Western blot (immunoblot) analysis. In vitro translation studies identified the 66-kDa protein as the protein product of WASP, and subcellular fractionation experiments showed that p66WASP is mainly present in the cytosol fraction, although significant amounts are also present in membrane and nuclear fractions. The main p47nck region implicated in the association with p66WASP was found to be the carboxy-terminal SH3 domain.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3309-3309
Author(s):  
Kazuaki Kameda ◽  
Yuji Miyatake ◽  
Yoshinobu Kanda ◽  
Ai Kotani

Abstract Aggressive natural killer cell leukemia (ANKL) is a rare form of natural killer (NK)-cell neoplasm with median survival of less than 2 months. Recently, the genomic mutation analysis using tumor cells reveled that the mutational profile of ANKL was similar to that of extranodal NK / T-cell lymphoma, which has relatively better prognosis than ANKL, explaining no causative mutations with a dismal prognosis. Here, using patient-derived xenograft model (PDX) mouse, we show that hepatic niche plays an important role in the ANKL biology. We established PDX mouse by intravenously injecting ANKL cells derived from patient peripheral blood or bone marrow samples to immunocompromised mice, which enables comprehensive analysis for tumor cells as well as tumor microenvironment. In total, we obtained four PDX strains derived from different patients. Time series pathological and flowcytometric analyses revealed that the ANKL cells initially engrafted and proliferated in sinusoidal or peri-portal area of the liver. This sinusoid or peri-portal distribution of ANKL in the liver was also confirmed with the patient liver specimen. To further determine the feature of ANKL in the liver, we selected liver or spleen tropic cells by serial adaptive transfer from each organ to the next mice. The liver-tropic ANKL cells proliferated more rapidly than splenic ANKL cells, which was evident by the significantly shorter survival of PDX mice injected liver-tropic cells (Figure). We performed RNA-sequencing using liver-tropic ANKL cells, spleen-tropic ANKL cells and NK-cells derived from healthy donors. These three types of cells showed distinct populations in principal component analysis. To further clarify the interaction between ANKL and liver niche, we performed additional RNA sequencing using total liver of mouse with or without bearing leukemic cells. In the cell-cell interaction analysis, we used two computational methods, mixed-species RNA-seq (Komura, et al. BMC Genomics 2016), which can distinguish transcripts derived from human (cancer) with mouse (non-cancer niche cells), and NicheNet (Browaeys, et al. Nat Methods 2020), which is a computational algorithm to model intercellular communication by linking ligands to target genes. These two methods allowed us to investigate the interaction between liver niche ligands and ANKL receptors. Among the listed ligand-receptor interactions, we focused on the macrophage migration inhibitory factor (MIF) and its receptor, CD74 axis. While CD74 was upregulated in ANKL cells compared with normal NK cells, MIF was highly expressed in the liver mainly liver sinusoid and Kupffer cells. Although we failed to culture primary ANKL cells in vitro, ANKL cells treated with MIF showed improved viability in vitro compared with untreated cells. Deletion of CD74 on the ANKL cells using CRISPR-Cas9 system attenuated the tumor formation in the liver as well as in bone marrow and spleen of PDX mouse compared with the wild type ANKL cells. These findings highlight that the liver, non-canonical hematopoietic organ in adults, is a principal niche where the liver specific components are required for survival and proliferation of ANKL cells. MIF-CD74 axis might play an important role in the communication between ANKL and hepatic niche. Figure 1 Figure 1. Disclosures Kanda: Otsuka Pharmaceutical: Honoraria, Research Funding; Sanofi: Research Funding; MSD: Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 404-404
Author(s):  
Benjamin Dannenmann ◽  
Maksim Klimiankou ◽  
Christian Lindner ◽  
Azadeh Zahabi ◽  
Regine Bernhard ◽  
...  

Abstract Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome. Recently we reported a high frequency of cooperating RUNX1 and CSF3R mutations in CN patients that developed AML or MDS. Only a combination of these two mutations induced elevated proliferation and diminished myeloid differentiation of CD34+ cells in vitro. To confirm these clinical data in an in vitro model, we generated human induced pluripotent stem cells (hiPSCs) from PBMNCs of a CN patient harbouring p.C151Y mutation in ELANE after acquisition of AML. During GCSF treatment, this patient acquired G-CSFRmutation p.Q741*, which leads to a truncated G-CSF receptor and was detected six years prior to overt AML. Three years later, he acquired an additional RUNX1 (p.R139G) mutation, which is located in the RUNT-homology domain (RHD). Subsequently, he developed AML (FAB M1) with trisomy 21. Reprogramming of PBMNCs isolated from the time-point of AML (ca. 80 % of AML blasts) resulted in the generation of hiPSCs clones harbouring either only ELANE p.C151Y mutation (CN-iPSC clone, derived from non-leukemia PBMNCs) or additional CSF3R and RUNX1 mutations and trisomy 21 (CN/AML-iPSC clone, derived from AML blasts), which was subsequently validated by Sanger sequencing and by digital PCR. These iPSCs clones have been tested for their pluripotency and self-renewal capacity. Both iPSC clones expressed the pluripotent stem cell surface markers SSEA-4 and TRA-1-60 and displayed alkaline phosphatase activity. Further they highly expressed mRNA of the pluripotent stem cell markers SOX2, ABCG2, DNMT and NANOG and were able to differentiate into all three germ layers (meso-, endo- and ectoderm). Embryoid body (EB)-based hematopoietic / neutrophilic differentiation of CN-iPS clones using serum-free APEL stem cell differentiation medium showed comparable amounts of CD34+ and CD33+ cells, but ~ 2-fold reduction of CD16+ cells, compared to healthy donor (HD) iPSCs. CN/AML-iPSCs were not able to differentiate into mature granulocytes at all and revealed 10-fold reduced counts of CD34+ and CD33+hematopoietic cells. Morphological examinations of Giemsa-stained cytospin slides confirmed these results. Additionally, CN/AML-iPSCs showed a highly reduced number of CFU-G and CFU-GM colonies in CFU-Assay. To investigate the intracellular mechanisms of leukemogenic transformation in CN, we analyzed gene expression profiles of hematopoietic cells generated from CN-iPSCs vs CN/AML-iPSCs and HD-iPSCs for various time points of differentiation in our EB based-system. Our previous microarray-based analysis of bone marrow CD33+ cells of this CN/AML patient revealed that genes overexpressed in early hematopoietic stem/progenitor cells (HSPCs) as compared to more mature progenitors, such as DNTT, BAALC, CD34, HPGDS, NPR3 and PROM1 were strongly upregulated in CN/AML blasts harbouring both RUNX1 and CSF3R mutations, as compared to the cells prior to leukemia development. Intriguingly, elevated expression of these genes was described previously in RUNX1-mutated de novo AML blasts (Mendler et al., JCO 2012). This genetic signature suggests transformation of hematopoietic progenitors carrying mutated CSF3R into more primitive hematopoietic progenitors after aquisition of RUNX1mutation. We were able to confirm markedly increase of mRNA levels of these genes in hematopoietic cells derived from CN/AML-iPSCs, as compared to CN-iPSCs. In addition, we found that hematopoietic cells of both CN-iPSCs and CN/AML-iPSCs revealed increased expression of unfolded-protein response (UPR) genes DDIT3 (CHOP), ATF4 and ATF6, as compared to HD-iPSCs. Activation of UPR in hematopoietic cells of CN-ELANEpatients has been previously described by our and other groups. CN/AML-iPSC-derived hematopoietic progenitor cells expressed RUNX1 mRNA at least two-fold higher, as compared to HD- or CN-iPSC-derived cells. In summary, we established an in vitro cellular model of leukemogenic transformation in CN patients using CN/AML-patient derived hiPSCs that confirmed clinical data of Skokowa et al. (Blood 123:2550, 2014) on a cooperative leukemogenic effect of CSF3R and RUNX1 mutations. Comprehensive analysis of hematopoiesis using this iPSCs model will give us a deeper view into this highly complex signaling network operating during leukemogenic transformation of HSCs in pre-leukemic bone marrow failure syndromes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 419-429
Author(s):  
D Wisniewski ◽  
R Knowles ◽  
M Wachter ◽  
A Strife ◽  
B Clarkson

Two monoclonal antibodies (MoAbs), H-25 and H-366, shown previously to react with human peripheral blood large granular lymphocytes with natural killer (NK) cell activity and some peripheral blood monocytes, have now been shown to also react with a significant proportion of the myeloid and erythroid precursor cells in human bone marrow and peripheral blood. In FACS IV cell sorting and immune rosetting of bone marrow cells, the antigens recognized by H-25 and H-366 were found to be expressed on most blasts and promyelocytes but sequentially fewer of the more mature cells of the myeloid lineage. Both antigens were also found on most monocytes but only a minor proportion of lymphoid and nucleated red cells in the bone marrow. In vitro assays detecting hematopoietic colony-forming units revealed that these antigens are expressed by virtually all mature erythroid colony-forming units (day-7 CFU-E), and the majority of the more primitive erythroid burst forming units (day-14 BFU-E). H-25 but not H-366 was also found on a variable proportion of the day-7 and day-14 granulocytic/monocytic colony- forming units (CFU-GM) in the bone marrow. The same type of precursor cells are also found in the H-25 and H-366 positive cell populations isolated from peripheral blood. In preliminary testing of cells from acute leukemic patients, FACS analysis showed that both antigens are also expressed on leukemic cells from patients with T cell acute lymphocytic leukemia and with myeloid leukemias. These studies demonstrate that the H-25 and H-366 positive NK cells in the peripheral blood retain some of the cell surface properties of early hematopoietic precursor cells, thus providing further evidence supporting the bone marrow origin of NK cells.


Sign in / Sign up

Export Citation Format

Share Document