scholarly journals Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML

Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3509-3512 ◽  
Author(s):  
Zhihong Zeng ◽  
Dos D. Sarbassov ◽  
Ismael J. Samudio ◽  
Karen W. L. Yee ◽  
Mark F. Munsell ◽  
...  

Abstract The mTOR complex 2 (mTORC2) containing mTOR and rictor is thought to be rapamycin insensitive and was recently shown to regulate the prosurvival kinase AKT by phosphorylation on Ser473. We investigated the molecular effects of mTOR inhibition by the rapamycin derivatives (RDs) temsirolimus (CCI-779) and everolimus (RAD001) in acute myeloid leukemia (AML) cells. Unexpectedly, RDs not only inhibited the mTOR complex 1 (mTORC1) containing mTOR and raptor with decreased p70S6K, 4EPB1 phosphorylation, and GLUT1 mRNA, but also blocked AKT activation via inhibition of mTORC2 formation. This resulted in suppression of phosphorylation of the direct AKT substrate FKHR and decreased transcription of D-cyclins in AML cells. Similar observations were made in samples from patients with hematologic malignancies who received RDs in clinical studies. Our study provides the first evidence that rapamycin derivatives inhibit AKT signaling in primary AML cells both in vitro and in vivo, and supports the therapeutic potential of mTOR inhibition strategies in leukemias.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 156-156 ◽  
Author(s):  
Zhihong Zeng ◽  
Dos D. Sarbassov ◽  
Francis J. Giles ◽  
Ismael Samudio ◽  
Karen W.L. Yee ◽  
...  

Abstract The mTOR complex 2 (mTORC2) containing mTOR and rictor is thought to be rapamycin-insensitive, and was recently shown to regulate the pro-survival kinase AKT by phosphorylation on Ser473 (Sarbassov Science 2005;307 and Mol Cell 2006;22). We investigated the molecular effects of mTOR inhibition by rapamycin analog CCI-779 in AML cells. Unexpectedly, CCI-779 not only inhibited the mTOR complex 1 (mTORC1) containing mTOR and raptor with decreased phosphorylation of p70S6K, 4EPB1 and reduction in Glut-1 mRNA, but also blocked AKT activation via inhibition of mTORC2 formation. This resulted in suppression of phosphorylation of the direct AKT substrate FKHR and decreased transcription of D-Cyclins in AML cell line and 5 of 8 primary AML samples in vitro. Similar observations were made in samples from patients with hematological malignancies who were treated with the rapamycin analogs temsirolimus or everolimus: the levels of Ser473 phosphorylated AKT decreased in 3/5 patient samples at 1 or 24 hour(s) of temsirolimus treatment, and in 6/8 patient samples treated with everolimus. In the 9 samples in which AKT was inhibited, ≥2-fold decrease in Cyclin D1 mRNA was observed in 5, Cyclin D2 in 3, both, Cyclin D1 and D2 in 1 sample, and Glut-1 in 4 patient samples. In 7 of the 9 patients in whom AKT was inhibited, a >50% decrease in peripheral blood absolute blast count (3 AML, 1 ALL) or absolute lymphocyte count (1 CLL) for >1 week duration was documented, and two patients with RAEB-1 had improvements in platelet counts, one fulfilling the criteria for clinical response (hematological improvement). No change in peripheral blood counts or progression of leukemia was seen in 6 patients. Of these, decrease in pAKT was observed in 2, no change in 3 and increase in 1 (Fisher exact two-tailed p= 0.021). Altogether, our study provides first evidence that rapamycin analogs inhibit AKT signaling in primary AML cells both in vitro and in vivo, and support the therapeutic potential of mTOR inhibition strategies in leukemias.


Tumor Biology ◽  
2018 ◽  
Vol 40 (4) ◽  
pp. 101042831877177 ◽  
Author(s):  
Andrea Mancini ◽  
Alessandro Colapietro ◽  
Simona Pompili ◽  
Andrea Del Fattore ◽  
Simona Delle Monache ◽  
...  

Morbidity in advanced prostate cancer patients is largely associated with bone metastatic events. The development of novel therapeutic strategies is imperative in order to effectively treat this incurable stage of the malignancy. In this context, Akt signaling pathway represents a promising therapeutic target able to counteract biochemical recurrence and metastatic progression in prostate cancer. We explored the therapeutic potential of a novel dual PI3 K/mTOR inhibitor, X480, to inhibit tumor growth and bone colonization using different in vivo prostate cancer models including the subcutaneous injection of aggressive and bone metastatic (PC3) and non-bone metastatic (22rv1) cell lines and preclinical models known to generate bone lesions. We observed that X480 both inhibited the primary growth of subcutaneous tumors generated by PC3 and 22rv1 cells and reduced bone spreading of PCb2, a high osteotropic PC3 cell derivative. In metastatic bone, X480 inhibited significantly the growth and osteolytic activity of PC3 cells as observed by intratibial injection model. X480 also increased the bone disease-free survival compared to untreated animals. In vitro experiments demonstrated that X480 was effective in counteracting osteoclastogenesis whereas it stimulated osteoblast activity. Our report provides novel information on the potential activity of PI3 K/Akt inhibitors on the formation and progression of prostate cancer bone metastases and supports a biological rationale for the use of these inhibitors in castrate-resistant prostate cancer patients at high risk of developing clinically evident bone lesions.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1346-1350
Author(s):  
Bharat Rathi ◽  
Renu Rathi ◽  
Vinod Ade ◽  
Akshay Pargaonkar

Chyavanprash a known Ayurvedic formulation formulated by sage Chyavan to impart youth, charm, strength & prolonged life. It is very much valued for possessing numerous health benefits with respect to the preventive, curative and promotive aspects of health. Chyavanprash can be consumed throughout the year. Several scientific evidences support its wholesome and safe healthy tonic status that is favorable for all age groups and genders alike. In modern days, it has gained mammoth popularity throughout the world. CP is prepared with Amalaki (Emblica officinalis) as a prime drug with other nutrient rich herbs help to preserve stamina, strength and vitality. Various pre clinical (in vivo & in vitro), Experimental, Analytical and clinical studies conducted on CP and its individual components revealed its various pharmacological activities most of which are suggestive of immunity enhancer and health supplements. Hence an attempt is made in the present paper to find out and explore the scientific evidences based on therapeutic potential of CP with respect to immunity and health supplements and make evidences available to the common people to combat the COVID-19 menace effectively.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4181-4187 ◽  
Author(s):  
Patrick Frost ◽  
Farhad Moatamed ◽  
Bao Hoang ◽  
Yijiang Shi ◽  
Joseph Gera ◽  
...  

Abstract In vitro studies indicate the therapeutic potential of mTOR inhibitors in treating multiple myeloma. To provide further support for this potential, we used the rapamycin analog CCI-779 in a myeloma xenograft model. CCI-779, given as 10 intraperitoneal injections, induced significant dose-dependent, antitumor responses against subcutaneous growth of 8226, OPM-2, and U266 cell lines. Effective doses of CCI-779 were associated with modest toxicity, inducing only transient thrombocytopenia and leukopenia. Immunohistochemical studies demonstrated the antitumor responses were associated with inhibited proliferation and angiogenesis, induction of apoptosis, and reduction in tumor cell size. Although CCI-779-mediated inhibition of the p70 mTOR substrate was equal in 8226 and OPM-2 tumor nodules, OPM-2 tumor growth was considerably more sensitive to inhibition of proliferation, angiogenesis, and induction of apoptosis. Furthermore, the OPM-2 tumors from treated mice were more likely to show down-regulated expression of cyclin D1 and c-myc and up-regulated p27 expression. Because earlier work suggested heightened AKT activity in OPM-2 tumors might induce hypersensitivity to mTOR inhibition, we directly tested this by stably transfecting a constitutively active AKT allele into U266 cells. The in vivo growth of the latter cells was remarkably more sensitive to CCI-779 than the growth of control U266 cells.


2015 ◽  
Vol 129 (10) ◽  
pp. 895-914 ◽  
Author(s):  
Uttara Saran ◽  
Michelangelo Foti ◽  
Jean-François Dufour

mTOR (mechanistic target of rapamycin) functions as the central regulator for cell proliferation, growth and survival. Up-regulation of proteins regulating mTOR, as well as its downstream targets, has been reported in various cancers. This has promoted the development of anti-cancer therapies targeting mTOR, namely fungal macrolide rapamycin, a naturally occurring mTOR inhibitor, and its analogues (rapalogues). One such rapalogue, everolimus, has been approved in the clinical treatment of renal and breast cancers. Although results have demonstrated that these mTOR inhibitors are effective in attenuating cell growth of cancer cells under in vitro and in vivo conditions, subsequent sporadic response to rapalogues therapy in clinical trials has promoted researchers to look further into the complex understanding of the dynamics of mTOR regulation in the tumour environment. Limitations of these rapalogues include the sensitivity of tumour subsets to mTOR inhibition. Additionally, it is well known that rapamycin and its rapalogues mediate their effects by inhibiting mTORC (mTOR complex) 1, with limited or no effect on mTORC2 activity. The present review summarizes the pre-clinical, clinical and recent discoveries, with emphasis on the cellular and molecular effects of everolimus in cancer therapy.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Sign in / Sign up

Export Citation Format

Share Document