scholarly journals Paradoxical effects of IFN-γ in graft-versus-host disease reflect promotion of lymphohematopoietic graft-versus-host reactions and inhibition of epithelial tissue injury

Blood ◽  
2009 ◽  
Vol 113 (15) ◽  
pp. 3612-3619 ◽  
Author(s):  
Hui Wang ◽  
Wannee Asavaroengchai ◽  
Beow Yong Yeap ◽  
Min-Guang Wang ◽  
Shumei Wang ◽  
...  

Abstract Interferon-γ (IFN-γ) inhibits graft-versus-host disease (GVHD) in lethally irradiated mice receiving allogeneic hematopoietic cell transplantation (allo-HCT) but promotes lethality in unirradiated and sublethally irradiated recipients. We investigated the role of IFN-γ in GVHD in sublethally irradiated B6D2F1 recipients of B6 allo-HCT. B6D2F1 mice receiving wild-type B6 splenocytes alone died rapidly, whereas those receiving wild-type B6 splenocytes plus marrow survived long-term. Mice in both groups showed rapid elimination of host hematopoietic cells but minimal parenchymal tissue injury. However, mice receiving allo-HCT from IFN-γ–deficient donors died rapidly regardless of whether donor marrow was given, and they exhibited severe parenchymal injury but prolonged survival of host hematopoietic cells. IFN-γ plays a similar role in another model involving delayed B6 donor leukocyte infusion (DLI) to established mixed allogeneic (B6→BALB/c) chimeras. IFN-γ promotes DLI-mediated conversion from mixed to full donor chimerism while attenuating GVHD. Importantly, IFN-γ enhances graft-versus-leukemia (GVL) effects in both models. Our data indicate that previously reported IFN-γ–induced early mortality in allo-HCT recipients is due to augmentation of lymphohematopoietic graft-versus-host reaction (LGVHR) and can be avoided by providing an adequate source of donor hematopoietic stem/progenitor cells. Furthermore, the magnitude of GVL is correlated with the strength of LGVHR, and IFN-γ reduces the potential of this alloreactivity to cause epithelial tissue GVHD.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2164-2164
Author(s):  
Motoko Koyama ◽  
Daigo Hashimoto ◽  
Kazutoshi Aoyama ◽  
Ken-ichi Matsuoka ◽  
Kennosuke Karube ◽  
...  

Abstract Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Alloantigen expression on host dendritic cells (DCs) is critical to initiate GVHD. DCs can be divided into two main subpopulations; conventional DCs (cDCs) and plasmacytoid DCs (pDCs), however, the contribution of each DC subset to elicit GVHD remains unclear. We examined the ability of cDCs and pDCs to initiate GVHD. pDCs, cDCs and B cells were isolated from C57BL/6 (B6: H–2b) mice treated with Flt3 ligand in order to expand DCs. pDCs were enriched from bone marrow by depleting CD3+, CD19+, CD11b+, and CD49b+ cells, followed by a FACS sorting of CD11cint B220+ cells. cDCs and B cells were sorted from splenocytes as CD11chi B220− cells and CD11c− B220+ cells, respectively. Isolated pDCs showed plasmacytoid morphology, produced IFN-α in response to CpG oligonucleotide. Although pDCs stimulated allogeneic T cells far less potently than cDCs, stimulation with CpG enhanced their allostimulatory capacity as potent as cDCs. We compared the ability of each DC subset to initiate GVHD by an add-back study of MHC class II-expressing DCs into MHC class II-deficient (II−/−) mice that were resistant to CD4-dependent GVHD. Lethally irradiated II−/− B6 mice were injected with 2 × 106 pDCs, cDCs or B cells from wild-type (II+/+) B6 mice on day -1 and injected with 2 × 106 CD4+ T cell from BALB/c (H–2d) mice on day 0. A flow cytometric analysis of the mesenteric lymph nodes on day +5 demonstrated significantly greater expansion of donor CD4+ T cells in recipients of pDCs or cDCs than those of B cells (Table). While injection of B cells did not cause any sign of GVHD, injection of pDCs or cDCs alone was sufficient to produce clinical and pathological GVHD (Table), thus breaking GVHD resistance of II−/− mice. We next examined the ability of pDCs to induce CD8-dependent GVHD in MHC-matched transplant using mice deficient in functional MHC class I expression (β2m−/−). Again, injection of pDCs or cDCs alone was sufficient to cause expansion of donor CD8+ T cells (p<0.05). We next asked whether signaling through Toll-like receptors (TLRs) could be required for pDCs to initiate GVHD. However, injection of pDCs isolated from MyD88/TRIF-double deficient mice was able to initiate GVHD as potent as wild-type pDCs, thus demonstrating that pDCs initiate GVHD in a TLR signaling independent manner. These results provide important information for developing strategies aimed at inactivating host DCs to prevent GVHD. Impact of each APC subpopulation on GVHD APC Donor CD4 expansion (×103±SE) Clinical GVHD score (mean±SE) Pathological GVHD score (mean±SE) *p<0.05 compared with B cells B cell 0.1 ± 0.0 2.1 ± 0.2 2.1 ± 0.2 pDC 5.3 ± 2.4* 4.3 ± 0.3* 7.4 ± 0.5* cDC 9.7 ± 3.8 * 3.8 ± 0.5 * 7.2 ± 0.7*


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 2111-2119 ◽  
Author(s):  
Jean-Sébastien Delisle ◽  
Louis Gaboury ◽  
Marie-Pier Bélanger ◽  
Éliane Tassé ◽  
Hideo Yagita ◽  
...  

Abstract The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-γ (IFN-γ), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)–mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-γ-receptor–deficient (IFN-γRKO) MHC-matched C57BL/6 recipients. In IFN-γRKO recipients, host cells were unresponsive to IFN-γ, whereas wt donor cells were exposed to exceptionally high levels of IFN-γ. From an IFN-γ perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-γR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-γRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-γ: Ccnd1 and Myc. We conclude that IFN-γ produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 150-150
Author(s):  
Ludovic Belle ◽  
Kimberle A. Agle ◽  
Vivian Zhou ◽  
Vanessa Yuan ◽  
Jie Sun ◽  
...  

Abstract The interleukin-6 (IL-6) cytokine superfamily (i.e. IL-6, IL-12, and IL-23) plays a major role in the modulation of inflammatory and regulatory pathways during graft versus host disease (GVHD). IL-27, a recently discovered member of this family, is a heterodimeric cytokine that is composed of the p28 and EBI3 subunits and signals through a heterodimeric receptor composed of WSX-1 and gp130. Notably, IL-6 also uses gp130 as a signaling component which biologically links IL-27 and IL-6. IL-27 has been shown to have opposing proinflammatory and immunoregulatory effects, but its role in GVHD is not well understood. To define the functional significance of IL-27, lethally irradiated Balb/c (H-2d) mice were transplanted with C57BL/6J (H-2b) BM and spleen cells, and then treated with an anti-IL-27p28-specific antibody on days 0 and +6. p28 antibody-treated animals had significantly improved weight recovery and overall survival (47% versus 0% survival at day 60, p=0.002), as well as reduced numbers of proinflammatory CD4+ and CD8+ IFN-γ+ T cells in GVHD target organs, when compared to isotype control antibody-treated mice. A similar outcome was observed in an MHC-matched, minor antigen disparate model (B6→Balb.B), indicating that this was not a strain-specific phenomenon. Given the similarities between IL-6 and IL-27, we examined whether blockade of IL-27 promoted regulatory T cell (Treg) reconstitution as has been observed with inhibition of IL-6 signaling. Recipients transplanted with BM grafts from B6 Foxp3EGFP reporter animals and treated with p28 antibody had a significant increase in the number of CD4+ nTregs, CD4+ iTregs and CD8+ iTregs in GVHD target organs, indicating that blockade of IL-27 augmented global Treg reconstitution. In fact, inhibition of IL-27 was more effective at augmenting Treg reconstitution than comparable antibody blockade of IL-6. To further elucidate the role of IL-27, we employed transgenic IL-27−/− and IL-27R−/− animals to dissect the relevant contributions of donor and recipient populations. Paradoxically, we observed that transplantation with IL-27−/− donor grafts exacerbated GVHD mortality and augmented accumulation of proinflammatory T cells, whereas transplantation of recipient IL-27−/− mice with wild type grafts had no effect on transplant outcomes. This discordance between antibody-based and genetic studies was unexpected and led us to consider whether there were steady state alterations in T cells from IL-27−/− animals that biased these cells towards a proinflammatory phenotype. To that end, we observed that naive CD8+ T cells from IL-27−/− mice had greater IFN-γ production than wild type cells after in vitro polyclonal stimulation and CD4+ nTregs from these animals had diminished expression of CXCR3 which is critical for Treg trafficking into inflamed tissue sites. Thus, the lack of endogenous IL-27 resulted in intrinsic immune dysregulation which led to an exacerbation of GVHD after transfer of these T cells into recipients. To resolve this paradox, we employed IL-27R−/− (WSX-1−/−) mice and demonstrated that mice transplanted with IL-27R−/− grafts had enhanced weight recovery and survival providing confirmation that blockade of IL-27 signaling reduced GVHD. In addition, using IL-27R−/− Foxp3EGFP reporter mice, we observed increased frequencies and numbers of CD4+ and CD8+ Foxp3+ T cells in mice reconstituted with IL-27R−/− grafts, confirming results observed with p28 antibody blockade. Since IL-10 is a mechanism by which CD4+ Tregs suppress GVHD and IL-27 has been shown to enhance T cell-derived IL-10 secretion in nontransplant models, we examined whether IL-27 blockade adversely affected IL-10 production by Tregs. Recipients transplanted with marrow grafts from IL-10.BitFoxp3EGFP dual reporter animals and treated with p28 antibody had a significant reduction in the frequency of IL-10-producing conventional CD4+ and CD8+ T cells in GVHD target organs. Notably, however, there was no difference in the frequency of CD4+ Foxp3+ IL-10+ T cells, indicating that blockade of IL-27 signaling preferentially affected conventional T cells and had no adverse effect on CD4+ Foxp3+ T cell-derived IL-10 production. In summary, these studies demonstrate that blockade of IL-27 signaling potently augments Treg reconstitution leading to a reduction in the severity of GVHD and may therefore represent a novel strategy to reduce mortality from this disease in man. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 2 (S1) ◽  
pp. 14-15
Author(s):  
Steven Schutt ◽  
Yongxia Wu ◽  
Anusara Daenthanasanmak ◽  
David Bastian ◽  
Carole Wilson ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a curative procedure for hematological malignancies. Chronic graft Versus host disease (cGVHD) is a lethal complication that often develops after allo-HCT. Fli-1 is an aberrantly expressed protein in cancers including erythroleukemia and melanoma, while being implicated in pathogenesis of systemic lupus in mice and humans, a disease with marked similarity to cGVHD. METHODS/STUDY POPULATION: cGVHD was induced using hematopoietic cells from conditional knock-out mice deficient for the fli-1 gene specifically on T cells and progression of cGVHD in murine allo-HCT recipients was monitored using a clinical scoring system, and changes in activation status of hematopoietic cell populations were quantified using flow cytometry. RESULTS/ANTICIPATED RESULTS: Recipients transplanted with fli-1 deficient T cells exhibited reduced cGVHD clinical scores compared with littermate wild-type controls. Donor-grafts containing fli-1 deficient T cells were associated with restrained T-cell responses including reduced Interferon-y cytokine production, PD-1 expression, and differentiation into follicular helper T cells. fli-1 T-cell deficient donor-grafts also improved donor B-cell reconstitution and reduced plasma cells in allo-HCT recipients relative to littermate wild-type control donor-graft recipients. DISCUSSION/SIGNIFICANCE OF IMPACT: Thus, inhibiting Fli-1 represents a promising therapeutic strategy for the goal of preventing cGVHD after allo-HCT while also directly targeting cancers which aberrantly express Fli-1.


Blood ◽  
1994 ◽  
Vol 84 (10) ◽  
pp. 3540-3549 ◽  
Author(s):  
DH Fowler ◽  
K Kurasawa ◽  
R Smith ◽  
MA Eckhaus ◽  
RE Gress

Abstract We have recently shown that donor CD4-enriched cells of Th2 cytokine phenotype, generated by treating mice in vivo with a combination of interleukin-2 (IL-2) and IL-4, prevent lipopolysaccharide-induced, tumor necrosis factor-alpha-mediated lethality during graft-versus-host reaction. To assess the potential regulatory role of such Th2-type cells in lethal graft-versus-host disease (GVHD) and graft rejection, we used a fully allogeneic murine transplant model using sublethally irradiated hosts (B6-->C3H, 500 cGy). Such recipients generated a strong host-versus-graft response, as reflected by their ability to reject T-cell-depleted inocula. The administration of T-cell-containing donor whole spleen inocula resulted in alloengraftment, but such recipients developed lethal GVHD. However, mice receiving sequential donor whole spleen (day 0) and CD4-enriched, Th2-type (day 1) populations engrafted, and had prolonged survival with protection from histologically defined tissue injury associated with GVHD. The findings in this fully allogeneic model thus extend our previous observations and indicate that the transfer of donor Th2-type cells may be an important strategy for regulating GVHD. Furthermore, the sequential “Th1(-)-->Th2-type” donor cell transfer described in this report represents a novel approach for abrogating graft rejection with concomitant control of GVHD and illustrates the importance of kinetics in the interaction of functionally distinct donor T-cell populations.


Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 2020-2025 ◽  
Author(s):  
Elena Litvinova ◽  
Sébastien Maury ◽  
Olivier Boyer ◽  
Sylvie Bruel ◽  
Laurent Benard ◽  
...  

Abstract Clinical data indicate that after allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies, the graft-versus-leukemia (GVL) effect is in large part mediated by the graft-versus-host reaction (GVHR), which also often leads to graft-versus-host disease (GVHD). Controlling alloreactivity to prevent GVHD while retaining GVL poses a true dilemma for the successful treatment of such malignancies. We reasoned that suicide gene therapy, which kills dividing cells expressing the thymidine kinase (TK) “suicide” gene using time-controlled administration of ganciclovir (GCV), might solve this dilemma. We have previously shown that after infusion of allogeneic TK T cells along with HSCT to an irradiated recipient, an early and short GCV treatment efficiently prevents GVHD by selectively eliminating alloreactive T cells while sparing nonalloreactive T cells, which can then contribute to immune reconstitution. Nevertheless, it remained to be established that this therapeutic strategy retained the desired GVL effect. Hypothesizing that a contained GVHR would be essential, we evaluated the GVL effect using different protocols of GCV administration. We were able to show that when the GCV treatment is initiated at, or close to, the time of grafting, GVHD is controlled but GVL is lost. In contrast, when the onset of GCV administration is delayed until day 6, a potent GVL effect is retained while GVHD is still controlled. These data emphasize that, by a time-optimized scheduling of the administration of GCV, this TK/GCV strategy can be tuned to efficiently treat malignant hemopathies.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 736
Author(s):  
Kudakwashe Mhandire ◽  
Komalpreet Saggu ◽  
Nataliya Prokopenko Buxbaum

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option in the treatment of aggressive malignant and non-malignant blood disorders. However, the benefits of allo-HSCT can be compromised by graft-versus-host disease (GvHD), a prevalent and morbid complication of allo-HSCT. GvHD occurs when donor immune cells mount an alloreactive response against host antigens due to histocompatibility differences between the donor and host, which may result in extensive tissue injury. The reprogramming of cellular metabolism is a feature of GvHD that is associated with the differentiation of donor CD4+ cells into the pathogenic Th1 and Th17 subsets along with the dysfunction of the immune-suppressive protective T regulatory cells (Tregs). The activation of glycolysis and glutaminolysis with concomitant changes in fatty acid oxidation metabolism fuel the anabolic activities of the proliferative alloreactive microenvironment characteristic of GvHD. Thus, metabolic therapies such as glycolytic enzyme inhibitors and fatty acid metabolism modulators are a promising therapeutic strategy for GvHD. We comprehensively review the role of cellular metabolism in GvHD pathogenesis, identify candidate therapeutic targets, and describe potential strategies for augmenting immunometabolism to ameliorate GvHD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huihui Liu ◽  
Zhengyu Yu ◽  
Bo Tang ◽  
Shengchao Miao ◽  
Chenchen Qin ◽  
...  

Acute graft-versus-host disease (aGVHD) is a lethal complication after allogeneic hematopoietic stem cell transplantation. The mechanism involves the recognition of host antigens by donor-derived T cells which induces augmented response of alloreactive T cells. In this study, we characterized the role of a previously identified novel classical secretory protein with antitumor function-LYG1 (Lysozyme G-like 1), in aGVHD. LYG1 deficiency reduced the activation of CD4+ T cells and Th1 ratio, but increased Treg ratio in vitro by MLR assay. By using major MHC mismatched aGVHD model, LYG1 deficiency in donor T cells or CD4+ T cells attenuated aGVHD severity, inhibited CD4+ T cells activation and IFN-γ expression, promoted FoxP3 expression, suppressed CXCL9 and CXCL10 expression, restrained allogeneic CD4+ T cells infiltrating in target organs. The function of LYG1 in aGVHD was also confirmed using haploidentical transplant model. Furthermore, administration of recombinant human LYG1 protein intraperitoneally aggravated aGVHD by promoting IFN-γ production and inhibiting FoxP3 expression. The effect of rhLYG1 could partially be abrogated with the absence of IFN-γ. Furthermore, LYG1 deficiency in donor T cells preserved graft-versus-tumor response. In summary, our results indicate LYG1 regulates aGVHD by the alloreactivity of CD4+ T cells and the balance of Th1 and Treg differentiation of allogeneic CD4+ T cells, targeting LYG1 maybe a novel therapeutic strategy for preventing aGVHD.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Layara Roberta Ferreira Duarte ◽  
Vanessa Pinho ◽  
Barbara Maximino Rezende ◽  
Mauro Martins Teixeira

Inflammation is an essential reaction of the immune system to infections and sterile tissue injury. However, uncontrolled or unresolved inflammation can cause tissue damage and contribute to the pathogenesis of various inflammatory diseases. Resolution of inflammation is driven by endogenous molecules, known as pro-resolving mediators, that contribute to dampening inflammatory responses, promoting the resolution of inflammation and the recovery of tissue homeostasis. These mediators have been shown to be useful to decrease inflammatory responses and tissue damage in various models of inflammatory diseases. Graft-versus-host disease (GVHD) is a major unwanted reaction following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by an exacerbated inflammatory response provoked by antigen disparities between transplant recipient and donor. There is no fully effective treatment or prophylaxis for GVHD. This review explores the effects of several pro-resolving mediators and discusses their potential use as novel therapies in the context of GVHD.


Sign in / Sign up

Export Citation Format

Share Document