scholarly journals Natural killer cell degranulation capacity predicts early onset of the immune reconstitution inflammatory syndrome (IRIS) in HIV-infected patients with tuberculosis

Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3315-3320 ◽  
Author(s):  
Polidy Pean ◽  
Eric Nerrienet ◽  
Yoann Madec ◽  
Laurence Borand ◽  
Didier Laureillard ◽  
...  

Abstract Immune reconstitution inflammatory syndrome (IRIS) is a common and potentially serious complication occurring in HIV-infected patients being treated for tuberculosis (TB) using combined antiretroviral treatment. A role of adaptive immunity has been suggested in the onset of IRIS, whereas the role of natural killer (NK) cells has not yet been explored. The present study sought to examine the involvement of NK cells in the onset of IRIS in HIV-infected patients with TB and to identify predictive markers of IRIS. A total of 128 HIV-infected patients with TB from the Cambodian Early versus Late Introduction of Antiretroviral Drugs (CAMELIA) trial were enrolled in Cambodia. Thirty-seven of the 128 patients developed IRIS. At inclusion, patients had low CD4 cell counts (27 cells/mm3) and high plasma viral load (5.76 and 5.50 log/mL in IRIS and non-IRIS patients, respectively). At baseline, NK-cell degranulation capacity was significantly higher in IRIS patients than in non-IRIS patients (9.6% vs 6.38%, P < .005). At IRIS onset, degranulation capacity did not differ between patients, whereas activating receptor expression was lower in IRIS patients. Patients with degranulation levels > 10.84% had a higher risk of IRIS (P = .002 by log-rank test). Degranulation level at baseline was the most important IRIS predictor (hazard ratio = 4.41; 95% confidence interval, 1.60-12.16). We conclude that NK-degranulation levels identify higher IRIS risk in HIV-infected patients with TB.

2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Gianchecchi ◽  
Domenico V. Delfino ◽  
Alessandra Fierabracci

Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Aurelie Gouel-Cheron ◽  
Martha Nason ◽  
Adam Rupert ◽  
Virginia Sheikh ◽  
Greg Robby ◽  
...  

Abstract Immune reconstitution inflammatory syndrome (IRIS) is characterized by release of proinflammatory cytokines and tissue inflammation occurring early after antiretroviral therapy (ART) initiation. The role of previous IRIS events in persistent chronic inflammation in people with HIV is currently unclear. In this retrospective analysis of 143 participants who maintained suppression of HIV viremia, we compared biomarkers related to inflammation, coagulation, and cardiovascular risk after 3 years on ART in participants with and without a history of IRIS. There was no evidence of higher levels of persistent chronic inflammation in people with HIV who had a history of an IRIS event. ClinicalTrials.gov Identifier . NCT00286767.


Author(s):  
Pramod Kumar A ◽  
Parthasarathi G ◽  
Mothi Sn ◽  
Sudheer Ap ◽  
Vht Swamy ◽  
...  

 Objective: Immune reconstitution inflammatory syndrome (IRIS) is an inflammatory reaction in HIV-infected patients after initiation of antiretroviral therapy (ART) resulting from restored immunity to specific infectious or non-infectious antigens. The most common condition where IRIS has been reported is tuberculosis (TB). Various mechanisms have been proposed and studied to account for the immune regulatory role of hydroxychloroquine (HCQ). This study is done to identify clinical outcome in HIV-TB patients with IRIS after given with HCQ.Methods: An uncontrolled longitudinal study was conducted among HIV-infected patients with TB initiated on ART and developed IRIS between July 2013 and June 2015 in a South Indian HIV care hospital.Results: A total of 40 patients have developed IRIS with mean age of 35.87 years and 77.5 % of them were males. At the time of IRIS occurrence, the mean body mass index was found to be 19.17 kg/m2 and CD4 count was 200 cells/mm3. The time duration took to get improvement in majority of the patients was 4–12 weeks.Conclusion: There was definite improvement seen in patients who received HCQ in TB-IRIS condition.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 260-269 ◽  
Author(s):  
KF Mangan ◽  
ME Hartnett ◽  
SA Matis ◽  
A Winkelstein ◽  
T Abo

Abstract To determine the role of natural killer (NK) cells in the regulation of human erythropoiesis, we studied the effects of NK-enriched cell populations on the in vitro proliferation of erythroid stem cells at three different levels of maturation (day 14 blood BFU-E, day 5–6 marrow CFU-E, and day 10–12 marrow BFU-E). NK cells were enriched from blood by Percoll density gradient centrifugation and by fluorescence- activated cell sorting (FACS), using the human natural killer cell monoclonal antibody, HNK-1. The isolated enriched fractions were cocultured with autologous nonadherent marrow cells or blood null cells and erythropoietin in a methylcellulose erythroid culture system. Cells from low-density Percoll fractions (NK-enriched cells) were predominantly large granular lymphocytes with cytotoxic activity against K562 targets 6–10-fold greater than cells obtained from high- density Percoll fractions (NK-depleted cells). In coculture with marrow nonadherent cells (NA) at NK:NA ratios of 2:1, NK-enriched cells suppressed day 5–6 CFU-E to 62% (p less than 0.025) of controls, whereas NK-depleted cells slightly augmented CFU-E to 130% of controls (p greater than 0.05). In contrast, no suppression of day 10–12 marrow BFU-E was observed employing NK-enriched cells. The NK CFU-E suppressor effects were abolished by complement-mediated lysis of NK-enriched cells with the natural killer cell antibody, HNK-1. Highly purified HNK- 1+ cells separated by FACS suppressed marrow CFU-E to 34% (p less than 0.025) and marrow BFU-E to 41% (p less than 0.025) of controls. HNK- cells had no significant effect on either BFU-E or CFU-E growth. NK- enriched cells were poor stimulators of day 14 blood BFU-E in comparison to equal numbers of NK-depleted cells or T cells isolated by E-rosetting (p less than 0.01). Interferon boosting of NK-enriched cells abolished their suboptimal burst-promoting effects and augmented their CFU-E suppressor effects. These studies provide evidence for a potential regulatory role of NK cells in erythropoiesis. The NK suppressor effect is maximal at the level of the mature erythroid stem cell CFU-E. These findings may explain some hypoproliferative anemias that develop in certain NK cell-activated states.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2189-2189 ◽  
Author(s):  
Jerome Rey ◽  
Nicolas Anfossi ◽  
Pascale Andre ◽  
Jean-Marie Boher ◽  
Florence Orlanducci ◽  
...  

Abstract Abstract 2189 Background: Human Natural Killer (NK) cells are able to kill abnormal cells while preserving normal cells. Accumulating clinical and experimental data point toward a key role of these cells in the control and clearance of most if not all hematologic malignancies. Recent insights into NK have stimulated studies of innate immunity in haematological malignancies, as the role of NK cells in allogeneic transplantation. Better knowledge of the deficiencies of these effector cells can allow elaborating new protocols of immunotherapy in order to directly enhance their capacity to eliminate tumor cells. Hence, the mechanisms of recognition and killing of leukemic cells and their role in vivo have only been investigated very recently. Even though lysis of leukemic cells or leukemic cell lines by NK cells has been described in vitro, mechanisms underlying the interaction and destruction of these cells are not clearly defined. Some of these receptors are altered in AML patients at diagnosis and might be involved in the immune escape of AML blasts. However, the recovery of NK cells during consolidation chemotherapy treatment has not been studied. The present study monitored status of NK cells following patient's remission after chemotherapy in order to provide new targets for immunotherapy. Methods: We enrolled 29 elderly patients (mean: 70-years old) with non promyelocytic AML in first CR following induction and pre-consolidation chemotherapy. Patient peripheral NK cells were analyzed at diagnosis, before consolidation chemotherapy and every two weeks after treatment for 8 weeks. 6-colors flow cytometry was performed to investigate the expression of MHC receptors (CD158a, b, e, i, CD85j and NKG2A), activating receptors (NKp30, NKp46, NKG2D, CD16, DNAM-1, 2B4) as well as their differentiation status (perforin and granzyme expression). Their function, as determined by cytotoxicity (51Cr release and CD107 expression) and cytokine production (intracellular staining of IFN-g), was analyzed using purified NK cells stimulated by K562, or in redirected assays using NKp30, NKp46 and CD16 mAbs. The recovery of these receptors was then correlated with PFS and OS. Results: NK cell counts were depressed after induction and pre-consolidation chemotherapy as compared to NK cell counts of age-matched controls; they were further depressed during the first 2 weeks post-consolidation chemotherapy, but were back to pre-consolidation chemotherapy level at 4 weeks. NKp30 and NKp46 expression was lower at diagnosis as compared to controls but their levels restored progressively after induction and consolidation chemotherapy. NKG2D expression were depressed at pre-consolidation but increased after consolidation chemotherapy. For inhibitory receptors, CD158a or CD158b expressions were depressed at diagnosis, at post-induction and consolidation chemotherapy. In contrast, the NKG2A positive NK cell subsets increased progressively after consolidation chemotherapy. Moreover, sizes of perforin or granzyme positive NK cell subsets were increased in treated AML patients. K562 cytotoxicity was depressed after induction chemotherapy but increased after consolidation chemotherapy. In contrast, IFN-g secretion was decreased, at all time points. Finally, we try to correlate the recovery of these different receptors with OS and PFS. NKp30 and NKG2D recovery seems to be correlated with better PFS and OS. Conclusions: This study confirms that NK cells from AML patients displayed different phenotype and functional abnormalities at diagnosis. Chemotherapy seems to have different impact on the recovery of inhibitory or activatory NK receptors. The predominant data is that NK cells recovered rapidly after consolidation chemotherapy and seems to be more operational at that time. Immunotherapy of NK cells must be probably developed post consolidation chemotherapy when NK cells are ready and residual disease low. Antibodies to stimulate NK cells are actually evaluated in this setting. Disclosures: Anfossi: Innate Pharma: Employment. Andre:Innate Pharma: Employment. Breso:Innate Pharma: Employment. Perri:Innate Pharma: Employment. Romagne:Innate Pharma: Employment.


Immunobiology ◽  
2014 ◽  
Vol 219 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Huyen Thi Thanh Tran ◽  
Rafael Van den Bergh ◽  
Trung Nghia Vu ◽  
Kris Laukens ◽  
William Worodria ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3327-3327
Author(s):  
Debora Queiros ◽  
Susanne Luther-Wolf ◽  
Eva M Weissinger ◽  
Arnold Ganser

Abstract Background: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for malignant hematological diseases in adults. Due to the delayed immune reconstitution after HSCT, human cytomegalovirus (CMV) can reactivate, leading to prolonged hospitalization and increased morbidity and even mortality. Natural Killer (NK) cells have recently been described to undergo persistent reconfiguration in response to CMV-reactivation. Here we analyzed the presence and expansion of CMV-specific NK cells in patients after allogeneic HSCT. Methods: A multicolor flow cytometry panel for monitoring the CMV-specific NK cell (NKG2C+CD57+) reconstitution and expression of activating receptors was established. Reconstitution of CMV-specific NK cells was assessed in peripheral blood samples from 67 CMV-seropositive patients. The samples were collected and analyzed between day 0 and 100 post-HSCT at intervals of 7-10 days. Monitoring of CMV-reactivation by CMV-pp65 expression and reconstitution of CMV-specific T cells (CMV-CTLs) was done routinely in our laboratory, using 7 commercially available, certified CMV-tetramers, allowing for comparison of CMV-CTL and NKG2C+CD57+ NK cells. For further immunological tests, PBMCs from CMV-seropositive healthy volunteers were isolated by density gradient centrifugation. NK cells were negatively selected by magnetic bead separation. Additional purification of NKG2C+CD57+ NK cellswas achieved by cell sorting. Selected NK cells were expanded by co-culture with irradiated allogeneic PBMCs as feeder cells and the medium was supplemented with PHA and IL-2. Expanded CD57+NKG2C+ NK cells were KIR-typed. Results: Our patient cohort consisted of 67 patients after allogeneic HSCT with a median age of 59 years (range: 20-75). Forty-two patients (62.7%) were transplanted for acute leukemia, 54 (80.6%) received reduced intensity conditioning (RIC) and 62 (92.5%) received anti-thymocyte-antibodies globulin (ATG). GvHD-prophylaxis was cyclosporine A (CsA) in combination with mycophenolate motefil (MMF) for 82.1% of the patients and 77.6% were transplanted from matched donors. Thirty-three (49.2%) patients reactivated CMV (median age: 59.5 years, range 28-75; median day of reactivation: 38 days post-HSCT, range: 19-54). A significant increase in the absolute cell counts of NKG2C+CD57+ NK cells was observed after CMV reactivation, when compared to patients who did not reactivate CMV (p<0.0001). Interestingly, we observed a decreased expression of the CD8-molecule on NK cells during CMV-reactivation. CD8-expression on NK cells was previously described to be associated with a more cytotoxic phenotype of NK cells, this decrease may be a consequence of apoptosis following lytic activity. Monitoring for an additional activation marker, NKG2D, showed a significant increased expression after CMV reactivation (p=0.006), demonstrating not only the activating regulation of NK cells, but also, the co-stimulatory effects on T cell proliferation and cytokine production. Remarkably, when comparing NKG2C+CD57+ NK cells with CMV-specific T cells (Figure 1), both cell populations show similar kinetics of expansion, with an increase in the absolute cell counts during and after CMV-reactivation. NKG2C+CD57+ preliminary expansion-studies were performed using peripheral blood samples from CMV-seropositive healthy volunteers. After two weeks in culture, an expansion of up to 3100-fold was achieved. Further studies to assess the proliferative capacity of NKG2C+CD57+ subpopulation and its functional properties post-HSCT, are ongoing. In addition, an extensive panel of cytokines and chemokines excreted by the NKG2C+CD57+cells will be studied in order to evaluate their recruitment ability of other cell-types. Conclusion: Taken together, our results indicate that NK cells undergo a dynamic modulation and expansion of this population occurs in response to CMV-reactivation. Additionally, NKG2C+CD57+ NK cells may substitute for missing CMV-specific T cells shortly after HSCT and may play an important role in sustaining the immune reconstitution after CMV-reactivation. This study shows that NKG2C+CD57+ NK cells can be selected and expanded in vitro, holding promise for adoptive transfer in patients with recurrent CMV-reactivations. Disclosures Ganser: Novartis: Membership on an entity's Board of Directors or advisory committees.


2002 ◽  
Vol 169 (8) ◽  
pp. 4253-4261 ◽  
Author(s):  
Simeon Santourlidis ◽  
Hans-Ingo Trompeter ◽  
Sandra Weinhold ◽  
Britta Eisermann ◽  
Klaus L. Meyer ◽  
...  

1999 ◽  
Vol 276 (5) ◽  
pp. R1496-R1505
Author(s):  
Shawn G. Rhind ◽  
Greg A. Gannon ◽  
Masatoshi Suzui ◽  
Roy J. Shephard ◽  
Pang N. Shek

Natural killer (NK) cells are important in combating viral infections and cancer. NK cytolytic activity (NKCA) is often depressed during recovery from strenuous exercise. Lymphocyte subset redistribution and/or inhibition of NK cells via soluble mediators, such as prostaglandin (PG) E2 and cortisol, are suggested as mechanisms. Ten untrained (peak O2 consumption = 44.0 ± 3.5 ml ⋅ kg−1 ⋅ min−1) men completed at 2-wk intervals a resting control session and three randomized double-blind exercise trials after the oral administration of a placebo, the PG inhibitor indomethacin (75 mg/day for 5 days), or naltrexone (reported elsewhere). Circulating CD3−CD16+/56+NK cell counts, PGE2, cortisol, and NKCA were measured before, at 0.5-h intervals during, and at 2 and 24 h after a 2-h bout of cycle ergometer exercise (65% peak O2 consumption). During placebo and indomethacin conditions, exercise induced significant ( P < 0.0001) elevations of NKCA (>100%) and circulating NK cell counts (>350%) compared with corresponding control values. With placebo treatment, total NKCA was suppressed (28%; P < 0.05) 2 h after exercise, and a postexercise elevation (36%; P = 0.02) of circulating PGE2 was negatively correlated ( r = 0.475, P = 0.03) with K-562 tumor cell lysis. NK counts were unchanged in the postexercise period, but at this stage CD14+ monocyte numbers were elevated ( P < 0.0001). Indomethacin treatment eliminated the postexercise increase in PGE2 concentration and completely reversed the suppression of total and per CD16+56+NKCA 2 h after exercise. These data support the hypothesis that the postexercise reduction in NKCA reflects changes in circulating PGE2 rather than a differential lymphocyte redistribution.


Sign in / Sign up

Export Citation Format

Share Document