scholarly journals Endogenous antigen presentation impacts on T-box transcription factor expression and functional maturation of CD8+ T cells

Blood ◽  
2012 ◽  
Vol 120 (16) ◽  
pp. 3237-3245 ◽  
Author(s):  
Corey Smith ◽  
Diah Elhassen ◽  
Stephanie Gras ◽  
Katherine K. Wynn ◽  
Vijayendra Dasari ◽  
...  

Abstract T-box transcription factors T-bet (Tbx21) and Eomesodermin (Eomes) are critical players in CD8+ cytotoxic T lymphocyte effector function and differentiation, but how the expression of these transcription factors is regulated remains poorly defined. Here we show that dominant T cells directed toward human CMV, expressing significantly higher levels of T-bet with graded loss of Eomes expression (T-bethiEomeshi/lo), are more efficient in recognizing endogenously processed peptide-major histocompatibility complexes (pMHC) compared with subdominant virus-specific T cells expressing lower levels of T-bet and high levels of Eomes (T-betintEomeshi). Paradoxically, the T-bethiEomeshi/lo dominant populations that efficiently recognized endogenous antigen demonstrated lower intrinsic avidity for pMHC, whereas T-betintEomeshi subdominant populations were characterized by higher pMHC avidity and less efficient recognition of virus-infected cells. Importantly, differential endogenous viral antigen recognition by CMV-specific CD8+ T cells also correlated with the differentiation status and expression of perforin, granzyme B and K. Furthermore, we demonstrate that the expression of T-bet correlates with clonal expansion, differentiation status, and expression of perforin, granzyme B and K in antigen-specific T cells. These findings illustrate how endogenous viral antigen presentation during persistent viral infection may influence the transcriptional program of virus-specific T cells and their functional profile in the peripheral blood of humans.


AIDS ◽  
2014 ◽  
Vol 28 (12) ◽  
pp. 1729-1738 ◽  
Author(s):  
Fabio Sforza ◽  
Francesco Nicoli ◽  
Eleonora Gallerani ◽  
Valentina Finessi ◽  
Eva Reali ◽  
...  


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A582-A582
Author(s):  
Asma Khanniche ◽  
Ying Wang

BackgroundNon small cell lung cancer is one of the cancer types where Immune checkpoint blockade has demonstrated unprecedented clinical efficiency. However, only a fraction of patients benefit from such therapy; factors determining this response are yet to be elucidated. Here, we investigated whether the differentiation status of circulating CD8 T cells might be associated with outcome of PD1 blockade therapy in NSCLC.MethodsWe used multi-parameter flow cytometry to study CD8 T cell differentiation states in NSCLC patients at baseline and to examine the effects of blocking the PD1/PDL1 pathway on those cells.ResultsWe found that responders to PD1 blockade therapy has more peripheral PD1+ CD8 T cells with an early-like differentiated status at baseline and that this phenotype is associated with longer survival. Moreover, PD1 blockade induced reinvigoration is mostly observed in cells with this with an early-like differentiated status.ConclusionsAn early like differentiation status of peripheral CD8 T cells is associated with favorable outcome of PD1 blockade immunotherapy



2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A305-A305
Author(s):  
Kathryn Appleton ◽  
Katy Lassahn ◽  
Ashley Elrod ◽  
Tessa DesRochers

BackgroundCancerous cells can utilize immune checkpoints to escape T-cell-mediated cytotoxicity. Agents that target PD-1, PD-L1 and CTLA4 are collectively deemed immune checkpoint inhibitors (ICIs), and many have been approved for treatment of non-small cell lung cancer (NSCLC) and melanoma. Unfortunately, many patients do not respond to these therapies and often experience disease progression. Immunohistochemistry assays to predict response to ICIs have been inconsistent in their readouts and often patients with low expression levels respond to ICIs. Understanding the determinants of ICI response in individual patients is critical for improving the clinical success of this drug class. Using patient-derived spheroids from NSCLC and melanoma primary tissue, we developed a multi-plexed assay for detecting ICI efficacy.MethodsNine NSCLC and 11 melanoma primary tumor samples were dissociated to single cells, classified for immune checkpoint expression and cell content by flow cytometry, and seeded for spheroid formation. Spheroids were treated with pembrolizumab, nivolumab, atezolizumab, ipilimumab or durvalumab across a range of concentrations and monitored for cytotoxicity at 24-hours and viability at 72-hours by multiplexing CellTox™ Green Cytotoxicity Assay and CellTiter-Glo® 3D Cell Viability Assay. IFNγ and granzyme B secretion was assessed using Luminex technology. ICI response was evaluated by determining the concentration-response relationship for all three read-outs.ResultsIncreased IFNγ and granzyme B were detected for every ICI in one or more patient samples. ICI-induced IFNγ secretion inversely correlated with PD-1+ immune cells. Durvalumab was significantly more cytotoxic for both NSCLC and melanoma spheroids compared to the other ICIs and significantly reduced spheroid viability with mean spheroid survival decreasing to 19.5% for NSCLC and 58.2% for melanoma. We evaluated if there was an association between durvalumab response and cell composition and found that percent spheroid survival significantly correlated with CD8+ T-cells for both NSCLC (r=-0.7920, p=0.0191) and melanoma (r=-0.6918, p=0.0390). Furthermore, CD8+ T-cells correlated with durvalumab-induced granzyme B secretion for NSCLC (r=-0.7645, p=0.0271) and melanoma (r=-0.7419, p=0.0221).ConclusionsIn this study we show ICI-specific increases in immune-related analytes in a concentration-dependent manner for NSCLC and melanoma patient-derived spheroids. We detected spheroid cytotoxicity following short term ICI treatment which closely mirrored decreased spheroid viability at a later timepoint. Finally, we can decipher response mechanisms as exemplified by durvalumab-induced granzyme B secretion correlating with the presence of CD8+ T-cells which results in reduced spheroid viability for both tested cancer indications.



Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1749
Author(s):  
Jing-Jing Wang ◽  
Michelle Kwan-Yee Siu ◽  
Yu-Xin Jiang ◽  
Thomas Ho-Yin Leung ◽  
David Wai Chan ◽  
...  

Programmed cell death 1 ligand (PD-L1) blockade has been used therapeutically in the treatment of ovarian cancer, and potential combination treatment approaches are under investigation to improve the treatment response rate. The increased dependence on glutamine is widely observed in various type of tumors, including ovarian cancer. Kidney-type glutaminase (GLS), as one of the isotypes of glutaminase, is found to promote tumorigenesis. Here, we have demonstrated that the combined treatment with GLS inhibitor 968 and PD-L1 blockade enhances the immune response against ovarian cancer. Survival analysis using the Kaplan–Meier plotter dataset from ovarian cancer patients revealed that the expression level of GLS predicts poor survival and correlates with the immunosuppressive microenvironment of ovarian cancer. 968 inhibits the proliferation of ovarian cancer cells and enhances granzyme B secretion by CD8+ T cells as detected by XTT assay and flow cytometry, respectively. Furthermore, 968 enhances the apoptosis-inducing ability of CD8+ T cells toward cancer cells and improves the treatment effect of anti-PD-L1 in treating ovarian cancer as assessed by Annexin V apoptosis assay. In vivo studies demonstrated the prolonged overall survival upon combined treatment of 968 with anti-PD-L1 accompanied by increased granzyme B secretion by CD4+ and CD8+ T cells isolated from ovarian tumor xenografts. Additionally, 968 increases the infiltration of CD3+ T cells into tumors, possibly through enhancing the secretion of CXCL10 and CXCL11 by tumor cells. In conclusion, our findings provide a novel insight into ovarian cancer cells influence the immune system in the tumor microenvironment and highlight the potential clinical implication of combination of immune checkpoints with GLS inhibitor 968 in treating ovarian cancer.



eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Antonio P Baptista ◽  
Ramon Roozendaal ◽  
Rogier M Reijmers ◽  
Jasper J Koning ◽  
Wendy W Unger ◽  
...  

Non-hematopoietic lymph node stromal cells shape immunity by inducing MHC-I-dependent deletion of self-reactive CD8+ T cells and MHC-II-dependent anergy of CD4+ T cells. In this study, we show that MHC-II expression on lymph node stromal cells is additionally required for homeostatic maintenance of regulatory T cells (Tregs) and maintenance of immune quiescence. In the absence of MHC-II expression in lymph node transplants, i.e. on lymph node stromal cells, CD4+ as well as CD8+ T cells became activated, ultimately resulting in transplant rejection. MHC-II self-antigen presentation by lymph node stromal cells allowed the non-proliferative maintenance of antigen-specific Tregs and constrained antigen-specific immunity. Altogether, our results reveal a novel mechanism by which lymph node stromal cells regulate peripheral immunity.



2020 ◽  
Author(s):  
Jia-yi XIE ◽  
Ming Liu ◽  
Yaxin Luo ◽  
Zhen Wang ◽  
Zhenghong Lu ◽  
...  

Abstract PurposeEsophageal cancer (EC) is the sixth leading cause of cancer death worldwide. Esophageal squamous cell carcinoma (ESCC) is a predominant subtype of EC. Identifying diagnostic biomarkers for ESCC is necessary for cancer practice. Increasing evidence illustrates that apolipoprotein C-1 (APOC1) participates in the carcinogenesis. However, the biological function of APOC1 in ESCC remains unclear. Patients and methodsWe investigated the expression level of APOC1 using TIMER2.0 and GEO databases, the prognostic value of APOC1 in ESCC using Kaplan-Meier plotter and TCGA databases. We used LinkedOmics to identify co-expressed genes with APOC1 and perform GO and KEGG pathway analysis. The target networks of kinases, miRNAs and transcription factors were predicted by gene set enrichment analysis (GSEA). The correlations between APOC1 and immune infiltration were calculated using TIMER2.0 and CIBERSORT databases. We further performed the prognostic analysis based on APOC1 expression levels in related immune cells subgroups via Kaplan-Meier plotter database. ResultsAPOC1 was found overexpressed in tumor tissues in multiple ESCC cohorts and high APOC1 expression was related to a dismal prognosis. Multivariate analysis confirmed that APOC1 overexpression was an independent indicator of poor OS. Functional network analysis indicated that APOC1 might regulate the natural killer cell mediated cytotoxicity, phagosome, AMPK and hippo signaling through pathways involving some cancer-related kinases, miRNA and transcription factors. Immune infiltration analysis showed that APOC1 was significantly positively correlated with M0 macrophages cells, M1 macrophages cells and activated NK cells, negatively correlated with regulatory T cells, CD8 T cells, neutrophils and monocytes. High APOC1 expression had a poor prognosis in server immune cells subgroups in ESCC, including decreased CD8+ T cells subgroups. ConclusionThese findings suggest that increased expression of APOC1 is related to poor prognosis and immune infiltration in ESCC. APOC1 holds promise for serving as a valuable diagnostic and prognostic marker in ESCC.



2008 ◽  
Vol 31 (4) ◽  
pp. 385-393 ◽  
Author(s):  
Liane Daudt ◽  
Rita Maccario ◽  
Franco Locatelli ◽  
Ilaria Turin ◽  
Lucia Silla ◽  
...  


2021 ◽  
Vol 10 (Supplement_2) ◽  
pp. S8-S8
Author(s):  
Matthew R Vogt ◽  
Peter F Wright ◽  
William F Hickey ◽  
Kelli L Boyd ◽  
James E Crowe

Abstract Background Acute flaccid myelitis (AFM) is a polio-like paralyzing illness of children. AFM incidence is increasing during every other year outbreaks that occur in the United States simultaneously with outbreaks of enterovirus D68 (EV-D68) infection. Demonstrating that EV-D68 directly causes AFM has been challenging due to rare detection of the virus in the cerebrospinal fluid (CSF) of patients despite frequent detection at nonsterile sites. Murine studies have shown that EV-D68 can infect spinal cord anterior horn motor neurons and cause paralysis, similar to poliovirus. However, a key outstanding question is whether EV-D68 causes AFM in humans by direct viral pathogenesis or by indirect host immunopathogenesis. Methods We investigated the pathogenesis of AFM using tissues from a previously reported case of a 5-year-old boy who presented in fall 2008 with four days of progressive limb and voice weakness followed by incontinence, apnea, and death. He had a CSF pleocytosis of 2094/µL with EV-D68 identified in the CSF by sequencing of the VP1 gene. We designed probes for in situ hybridization (ISH) based on this sequence to stain formalin fixed paraffin embedded tissues from his autopsy. For immunohistochemistry (IHC) we used both commercial polyclonal anti-EV-D68 antibodies and our own human monoclonal antibodies that stain virus infected cells in vitro. Immunophenotyping was done by IHC. To analyze gene transcription in the inflammatory transcriptome of these infected areas of spinal cord we used the GeoMx platform from Nanostring. Results We identified EV-D68 in the anterior horn of the patient’s spinal cord, corresponding to the location of motor neuron cell bodies. This area was highly inflamed, with an infiltrate of CD8 T cells and many macrophages. Viral RNA (see figure) and viral protein was visualized in motor neurons but not supporting cells using ISH and IHC, respectively. Viral RNA but not viral protein was detected rarely in the lungs in macrophages, which had extensive inflammatory infiltrate. The infiltrate was predominantly composed of macrophages with a CD8 T cell component as well. The transcriptome of cells in the inflamed tissue was enriched for genes involved in antigen presentation on MHC. Conclusions Deaths in AFM patients are rare and often distant from initial presentation, but this patient died four days after onset of weakness, allowing us to directly demonstrate that EV-D68 can infect the human spinal cord. Motor neurons but not neural support cells are directly infected by EV-D68 with a corresponding infiltrate of macrophages and CD8 T cells. Antigen presentation processes are upregulated in inflamed tissues. Therefore, both direct viral pathology and immune factors likely contribute to AFM disease in EV-D68 infection.



Blood ◽  
2015 ◽  
Vol 125 (3) ◽  
pp. 570-580 ◽  
Author(s):  
Anne-Kathrin Hechinger ◽  
Benjamin A. H. Smith ◽  
Ryan Flynn ◽  
Kathrin Hanke ◽  
Cameron McDonald-Hyman ◽  
...  

Key Points Monoclonal antibody blockade of the common γ chain attenuates acute and chronic GVHD. Common γ-chain cytokines increase granzyme B levels in CD8 T cells, which are reduced upon CD132 blockade in vivo.



Sign in / Sign up

Export Citation Format

Share Document