scholarly journals RNA-Seq Analysis of Clonal Hematopoiesis (CHIP) Blood Leukocytes Shows Dysregulation of Neutrophil / Innate Immunity-Related Genes

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3843-3843
Author(s):  
Elina K Cook ◽  
Richard N Armstrong ◽  
Eshita Sharma ◽  
Brooke Snetsinger ◽  
Jacqueline Boultwood ◽  
...  

Abstract BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) involves the peripheral blood (PB) expansion of progeny of a hematopoietic stem or progenitor cell that is somatically mutated in a hematological cancer-associated gene (most often TET2 or DNMT3A). CHIP associates with comorbid diseases of aging such as cardiovascular disease. Murine knockout (Tet2 or Dnmt3a) and engraftment models of CHIP develop exacerbated cardiovascular disease and their mutated myeloid cells are more reactive to inflammatory stimuli. However, whether blood leukocytes in human CHIP are hyper-inflammatory remains speculative. We recently found people with CHIP have higher serum levels of certain pro-inflammatory cytokines and chemokines than controls (Cook et al, ASH 2017). Thus, we hypothesized that PB effector cells in people with CHIP will be enriched for pro-inflammatory gene expression and pathways. METHODS: The presence of CHIP (variant allele frequency, VAF>0.02) was determined in the whole PB of 30 hematologically healthy adults >65 years old at Baycrest and Sunnybrook Health Sciences Centers (Toronto, Canada) using Ion Proton DNA sequencing targeting 48 commonly mutated genes in myeloid neoplasms. RNA-Seq (HISeq 4000, Illumina, 75bp paired-end sequencing reads with a depth of >50 million/sample) was performed on corresponding ribo-depleted whole PB samples (PAXgene), reads were aligned with HISAT2, gene counts quantified with featureCount, and analyzed with DESeq2. FDR<0.1 was used as a cutoff for differential gene expression analyses. Correlations with clinical and comorbidity data were tested with logistic regressions. RESULTS: People with CHIP ("CHIP+", n: males=8, females=13; TET2=12, DNMT3A=8, SF3B1=1; VAF range=0.03-0.40) compared to those without CHIP ("CHIP-", n: males=3, females=6) had six significantly downregulated genes (e.g. GZMM) and 10 upregulated genes (e.g. DEFA4, LTF, MPO, see Figure 1A). Hierarchical clustering of these top genes yielded two groups, one consisting of most of the CHIP- cases (8/9 cases, in a cluster of 11, see Figure 1A). The three CHIP+ cases that clustered with CHIP- had VAFs lower than 0.15. Of the 16 differentially regulated genes between CHIP+ and CHIP-, nine were recognized by reactome, and most overlapped (≥6 genes) with pathways involving neutrophil degranulation and innate immunity (Figure 1B). DEFA4, LTF, CRISP3, BPI and MPO specifically encode components of neutrophil granules, with various anti-microbial and homeostatic functions. However, mean neutrophil counts (4.6±1.6 vs. 4.4±1.6 10^9/L for CHIP+ vs. CHIP-) and neutrophil to lymphocyte ratios (3.2±1.4 vs. 2.8±2.1 in CHIP+ vs. CHIP-) did not significantly differ between the groups. This suggests that mutations of CHIP may affect neutrophil/immune-related function or phenotype, potentially contributing to comorbid disease. For example, greater expression of alpha-defensins (i.e. DEFA4) in CHIP may involve dysregulated granulocyte maturation and inflammatory function as seen in myelodysplasia (Droin et al, 2010 Blood), suggesting a potential dysregulation of inflammation and immunity. Higher VAFs (>0.15) associated with higher ECOG scores (poorer overall daily functioning: odds ratio=44, 95% CI=4-500, p=0.002), suggesting that larger proportions of mutated cells may have greater effects on gene expression profiles. Accordingly, there were linear correlations between the VAFs of the mutated cell populations and the levels of differentially expressed genes (Figure 1C). CONCLUSIONS: The connection between mutant clones of CHIP and disease remains poorly elucidated. For the first time, to our knowledge, we studied gene expression in CHIP leukocytes. We report that the most prominent gene expression differences between people with CHIP and those without CHIP involve neutrophil degranulation and the innate immune system. Additionally, higher VAFs may have a greater influence on gene expression levels and health than lower VAFs. We plan to validate these candidate genes in a larger cohort. These novel data warrant further investigation of the cellular pathways perturbed by somatic mutations of CHIP. Disclosures Buckstein: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1199-1199 ◽  
Author(s):  
Brian Liddicoat ◽  
Robert Piskol ◽  
Alistair Chalk ◽  
Miyoko Higuchi ◽  
Peter Seeburg ◽  
...  

Abstract The role of RNA and its regulation is becoming increasingly appreciated as a vital component of hematopoietic development. RNA editing by members of the Adenosine Deaminase Acting on RNA (ADAR) gene family is a form of post-transcriptional modification which converts genomically encoded adenosine to inosine (A-to-I) in double-stranded RNA. A-to-I editing by ADAR directly converts the sequence of the RNA substrate and can alter the structure, function, processing, and localization of the targeted RNA. ADAR1 is ubiquitously expressed and we have previously described essential roles in the development of hematopoietic and hepatic organs. Germline ablation of murine ADAR1 results in a significant upregulation of interferon (IFN) stimulated genes and embryonic death between E11.5 and E12.5 associated with fetal liver disintegration and failed hemopoiesis. To determine the biological importance of A-to-I editing by ADAR1, we generated an editing dead knock-in allele of ADAR1 (ADAR1E861A). Mice homozygous for the ADAR1E861A allele died in utero at ∼E13.5. The fetal liver (FL) was small and had significantly lower cellularity than in controls. Analysis of hemopoiesis demonstrated increased apoptosis and a loss of hematopoietic stem cells (HSC) and all mature lineages. Most notably erythropoiesis was severely impaired with ∼7-fold reduction across all erythrocyte progenitor populations compared to controls. These data are consistent with our previous findings that ADAR1 is essential for erythropoiesis (unpublished data) and suggest that the ADAR1E861A allele phenocopies the null allele in utero. To assess the requirement of A-to-I editing in adult hematopoiesis, we generated mice where we could somatically delete the wild-type ADAR1 allele and leave only ADAR1E861A expressed in HSCs (hScl-CreERAdar1fl/E861A). In comparison to hScl-CreERAdar1fl/+ controls, hScl-CreERAdar1fl/E861A mice were anemic and had severe leukopenia 20 days post tamoxifen treatment. Investigation of marrow hemopoiesis revealed a significant loss of all cells committed to the erythroid lineage in hScl-CreERAdar1fl/E861A mice, despite having elevated phenotypic HSCs. Upon withdrawal of tamoxifen diet, all blood parameters were restored to control levels within 12 weeks owing to strong selection against cells expressing only the ADAR1E861A allele. To understand the mechanism through which ADAR1 mediated A-to-I editing regulates hematopoiesis, RNA-seq was performed. Gene expression profiles showed that a loss of ADAR1 mediated A-to-I editing resulted in a significant upregulation of IFN signatures, consistent with the gene expression changes in ADAR1 null mice. To define substrates of ADAR1 we assessed A-to-I mismatches in the RNA-seq data sets. 3,560 previously known and 353 novel A-to-I editing sites were identified in our data set. However, no single editing substrate discovered could account for the IFN signature observed or the lethality of ADAR1E861A/E861A mice. These results demonstrate that ADAR1 mediated A-to-I editing is essential for the maintenance of both fetal and adult hemopoiesis in a cell-autonomous manner and a key suppressor of the IFN response in hematopoiesis. Furthermore the ADAR1E861A allele demonstrates the essential role of ADAR1 in vivo is A-to-I editing. Disclosures: Hartner: TaconicArtemis: Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1231-1231
Author(s):  
Chih Long Liu ◽  
Bo Dai ◽  
Aaron M. Newman ◽  
Ravi Majeti ◽  
Ash A Alizadeh

Abstract Abstract 1231 Background: Current methods for defining and isolating human hematopoietic stem and progenitor cells using surface markers enrich for unique functional properties of these populations. However, significant functional heterogeneity in these compartments remains with important implications for understanding normal and altered hematopoiesis. Using flow sorting to enrich >10,000 cells as progenitor subpopulations, we previously characterized the gene expression signature of normal human HSC (Majetiet al 2009 PNAS 106(9):3396–3401). We hypothesized that interrogation of the transcriptomes of single cells from this compartment could resolve remaining heterogeneity and help identify and better define features of progenitor cells and hematopoietic stem cells (HSCs). Methods: Using normal human bone marrow aspirates and a FACS Aria II instrument equipped with a specialized single-cell sorting apparatus, we sorted cells enriched for HSCs based on expression of Lin-CD34+CD38-CD90+CD45RA− into 1-cell, 10-cell, 100-cell, and 40000-cell (bulk) representations. We used at least 5 replicates per group and verified single cell deposition by direct visualization. We amplified cDNA from these corresponding inputs using an exponential whole transcriptome amplification (WTA) scheme (Miltenyi SuperAmp), and evaluated gene expression profiles by two microarray platforms (Agilent/GE Healthcare 60K, and Affymetrix U133 plus 2.0), and by RNA-Seq (Illumina). We used gene expression correlation between replicates within and between microarrays as means of assessing methodological reproducibility and estimating population heterogeneity. Results: Whole transcriptome amplification yielded cDNA ranging from 0.2–1 kb for 10 and 100 cells, with significantly lower size distribution of amplified cDNA observed for single cells. Gene expression profiles had significantly better replicate reproducibility and array coverage with the Agilent microarray platform when compared with the Affymetrix U133 Plus 2.0 platform (gene coverage of 84 % for 100 cells, 73 % for 10 cells and 50% for 1 cell for Agilent vs 24 % for 100 cells, 11 % for 10 cells and 5.7% for 1 cell for Affymetrix). RNA-Seq profiling of the same populations is ongoing with major technical optimizations focused on reducing amplification of non-human templates while maintaining library complexity and representation. Using biological replicates for each input size, we observed high inter-replicate correlation levels for expression profiles obtained for bulk sorted HSCs from 8 healthy donors (∼40000-cells, average r=0.97) and for 100-cell and 10-cell inputs from a single donor (r=0.96–0.99, respectively). While intra-array concordance of replicate measurements (n=14642) was high (r>0.91) within each of 5 single cells from a single donor, comparison of 5-single cells from the same donor identified significant heterogeneity, when compared to the 10-cell and 100-cell sub-clusters (Figure 1). Individual genes characteristically expressed by these heterogeneous single cell populations are currently being investigated by FACS and Fluidigm arrays. A larger experiment characterizing 192 single progenitor cells, employing Agilent microarrays and RNA-Seq is currently in progress. Conclusions: Single cell transcriptome profiling is feasible, with best performance on 60-mer microarrays. Single cell transcriptomes exhibit lower, but reasonable levels of reproducibility (r>0.7) and precision as compared with higher cell numbers. Gene expression profiles of single cells capture gene expression heterogeneity in HSCs. Disclosures: No relevant conflicts of interest to declare.


Vascular ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 655-663 ◽  
Author(s):  
Jeongok G Logan ◽  
Sijung Yun ◽  
Yongde Bao ◽  
Emily Farber ◽  
Charles R Farber

Objectives Arterial stiffness is recognized as an important predictor of cardiovascular disease morbidity and mortality, independent of traditional cardiovascular disease risk factors. Given that arterial tissue is not easily accessible, most gene expression studies on arterial stiffness have been conducted on animals or on patients who have undergone by-pass surgeries. In order to obtain a deeper understanding of early changes of arterial stiffness, this study compared transcriptome profiles between healthy adults with higher and lower arterial stiffness. Methods The sample included 20 healthy female adults without cardiovascular disease. Arterial stiffness was measured by carotid-femoral pulse wave velocity, the “gold-standard” measure of central arterial stiffness. Peripheral blood samples collected to PAXgene™ RNA tubes were used for RNA sequencing (RNA-seq). The potential confounding effects of age, body mass index, and mean arterial pressure were controlled for in RNA-seq analysis. To validate RNA-seq results, quantitative real-time PCR (qRT-PCR) was performed for six selected genes. Results The findings demonstrated that genes including CAPN9, IL32, ERAP2, RAB6B, MYBPH, and miRNA626 were down-regulated, and that MOCS1 gene was up-regulated among the people with higher arterial stiffness. Real-time PCR showed that the changes of CAPN9, IL32, ERAP2, and RAB6B were in concordance with RNA-seq data, and confirmed the validity of the gene expression profiles obtained by RNA-seq analysis. Conclusions Previous studies have suggested the potential roles of CAPN9, IL32, and ERAP2 in structural changes of the arterial wall through up-regulation of metalloproteinases. However, the current study showed that CAPN9, IL32, and ERAP2 were down-regulated in the individuals with higher arterial stiffness, compared with those with lower arterial stiffness. The unexpected directions of expression of these genes may indicate an effort to maintain vascular homeostasis during increased arterial stiffness among healthy individuals. Further studies are guaranteed to investigate the roles of CAPN9, IL32, and ERAP2 in regulating arterial stiffness in people with and without cardiovascular disease.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2159-2159
Author(s):  
Elina K Cook ◽  
Michael Luo ◽  
Jeffrey Mewburn ◽  
Kimberly J Dunham-Snary ◽  
Charles Hindmarch ◽  
...  

Abstract BACKGROUND: Neutrophils, the most abundant leukocytes and granulocytes, are important regulators of cardiovascular, inflammatory and infectious diseases, yet their role in the pathophysiology of clonal hematopoiesis of indeterminate potential (CHIP) has not been adequately addressed. The effects of inactivating CHIP-driver mutations in the epigenetic regulator TET2 in neutrophils especially, are broadly unknown. HYPOTHESIS: Tet2 inactivation in murine neutrophils, and TET2 mutations in CHIP in humans (CHIP TET2), perturb granulocyte immune effector functions. METHODS: Neutrophils were obtained (EasySep™, StemCell) from the bone marrow of 2- to 4-months-old, sex-matched, control Tet2 f/f;Vav1-icre - (Tet2 f/f) and hematopoietic knockout Tet2 f/f;Vav1-icre + (Tet2 -/-) mice. Neutrophils were cultured (RPMI+10% mouse serum/FBS) and: i) stained with Mitotracker Deep Red/Nuc Blue, co-cultured and imaged (Leica SP8-X) for 30min with GFP-labeled Staphylococcus aureus (10:1 ratio) and analyzed in FIJI; ii) cultured for 3h with vehicle or 10μg/mL of S. aureus lipotechoic acid (LTA). RNA-Seq was generated (Illumina QuantSeq 3' mRNA, single-end 75bp read lengths, 5 million reads/sample), trimmed, aligned to GRCm39 using STAR. CHIP participant DNA and RNA were sequenced previously from whole blood (Cook et al., Bld Adv 2019; Cook et al., ASH 2018, with a 48-gene panel on Ion Proton, and ribo-depleted bulk RNA on Illumina, respectively). New CHIP TET2 vs. no CHIP, and murine RNA-Seq analyses were carried out in DESeq2. Human serum granule protein levels were quantified by ELISA (VersaMax). Mann-Whitney U tests were carried out in Prism. P&lt;0.05 was considered statistically significant, and Benjamini-Hochberg multiple testing correction was applied as needed. RESULTS: Tet2 -/- mice had 1.34-fold more bone marrow CD11b +Ly6G + neutrophils than control Tet2 f/f mice (p=0.03), consistent with myeloid expansion. Compared to Tet2 f/f, Tet2 -/- neutrophils phagocytosed fewer S. aureus (Fig1A) and moved more slowly (Fig1B). Preliminary data suggest that Tet2 -/- neutrophil extracellular trap (NET) formation in response to S. aureus was also impaired, showing fewer and less extensive NETs (Fig1C). LTA-stimulated gene expression profiles were similar between Tet2 -/- and Tet2 f/f, suggesting pre-existing differences at baseline. Unexpectedly, the most significant GO term enrichment related to upregulated viral response pathways, including interferon-stimulated genes, (e.g. Ifitm1). The cause is unknown, but this is reminiscent of the constitutive interferon response seen in myelodysplastic syndrome (MDS) patients and TET2-mutant hematopoietic stem cells, where epigenetic dysregulation of endogenous retrotransposable elements leads to a viral mimicry response. Tet2 -/- neutrophils also overexpressed Asprv1, a regulator of inflammation ostensibly acquired from a retrotransposon. Interestingly, Ccdc80, which has been linked to Tet2 and Jak2 functions, was most significantly downregulated in Tet2 -/-, along with the Pnpla1 lipid phosphatase. Finally, Tesc, a promoter of granulocytic differentiation, was upregulated in Tet2 -/-, and there were perturbations of genes encoding neutrophil granule contents. Similarly, human RNA-Seq revealed that several leukocyte (de)granulation-related genes (e.g. lactoferrin LTF, myeloperoxidase MPO) were upregulated in CHIP TET2 subjects to those without CHIP, and these corresponded with higher LTF and MPO serum titers in an expanded cohort (Fig1D,E). Finally, there were striking decreases of gene expression associated with cytotoxic (T/NK) human lymphocytes (i.e. GZMM, TRGV8, etc.). Neutrophil, lymphocyte and monocyte counts were not significantly different between the groups. CONCLUSIONS: Tet2-deficient murine neutrophils have compromised immune function, possibly due to differences in pre-stimulus state. TET2-mutation carrying neutrophils in CHIP may exhibit similar abnormalities, as has been previously noted in neutrophils isolated from MDS patients. Indeed, CHIP is now known to associate with increased risk of bacterial and viral infections, and infection risk has also previously been noted for MDS. People with CHIP have elevated peripheral blood serum MPO and LTF levels, suggesting a difference in leukocyte granule biology, likely related to neutrophils. These data aid in understanding how CHIP alters immunity. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanlei Yue ◽  
Ze Jiang ◽  
Enoch Sapey ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Abstract Background In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. Results We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. Conclusions These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1610
Author(s):  
Mohammad Vatanparast ◽  
Youngjin Park

Solenopsis japonica, as a fire ant species, shows some predatory behavior towards earthworms and woodlice, and preys on the larvae of other ant species by tunneling into a neighboring colony’s brood chamber. This study focused on the molecular response process and gene expression profiles of S. japonica to low (9 °C)-temperature stress in comparison with normal temperature (25 °C) conditions. A total of 89,657 unigenes (the clustered non-redundant transcripts that are filtered from the longest assembled contigs) were obtained, of which 32,782 were annotated in the NR (nonredundant protein) database with gene ontology (GO) terms, gene descriptions, and metabolic pathways. The results were 81 GO subgroups and 18 EggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) keywords. Differentially expressed genes (DEGs) with log2fold change (FC) > 1 and log2FC < −1 with p-value ≤ 0.05 were screened for cold stress temperature. We found 215 unigenes up-regulated and 115 unigenes down-regulated. Comparing transcriptome profiles for differential gene expression resulted in various DE proteins and genes, including fatty acid synthases and lipid metabolism, which have previously been reported to be involved in cold resistance. We verified the RNA-seq data by qPCR on 20 up- and down-regulated DEGs. These findings facilitate the basis for the future understanding of the adaptation mechanisms of S. japonica and the molecular mechanisms underlying the response to low temperatures.


2021 ◽  
Author(s):  
Taguchi Y-h. ◽  
Turki Turki

Abstract The integrated analysis of multiple gene expression profiles measured in distinct studies is always problematic. Especially, missing sample matching and missing common labeling between distinct studies prevent the integration of multiple studies in fully data-driven and unsupervised manner. In this study, we propose a strategy enabling the integration of multiple gene expression profiles among multiple independent studies without either labeling or sample matching, using tensor decomposition-based unsupervised feature extraction. As an example, we applied this strategy to Alzheimer’s disease (AD)-related gene expression profiles that lack exact correspondence among samples as well as AD single-cell RNA-seq (scRNA-seq) data. We found that we could select biologically reasonable genes with integrated analysis. Overall, integrated gene expression profiles can function analogously to prior learning and/or transfer learning strategies in other machine learning applications. For scRNA-seq, the proposed approach was able to drastically reduce the required computational memory.


2021 ◽  
Author(s):  
Lichun Zhang ◽  
Xiaoqian Yang ◽  
Yiyi Yin ◽  
Jinxing Wang ◽  
Yanwei Wang

Abstract Quantitative real time polymerase chain reaction (qRT-PCR) is a common method to analyze gene expression. Due to differences in RNA quantity, quality, and reverse transcription efficiency between qRT-PCR samples, reference genes are used as internal standards to normalize gene expression. However, few universal genes especially miRNAs have been identified as reference so far. Therefore, it is essential to identify reference genes that can be used across various experimental conditions, stress treatments, or tissues. In this study, 14 microRNAs (miRNAs) and 5.8S rRNA were assessed for expression stability in poplar trees infected with canker pathogen. Using three reference gene analysis programs, we found that miR156g and miR156a exhibited stable expression throughout the infection process. miR156g and miR156a were then tested as internal standards to measure the expression of miR1447 and miR171c, and the results were compared to small RNA sequencing (RNA-seq) data. We found that when miR156a was used as the reference gene, the expression of miR1447 and miR171c were consistent with the small RNA-seq expression profiles. Therefore, miR156a was the most stable miRNAs examined in this study, and could be used as a reference gene in poplar under canker pathogen stress, which should enable comprehensive comparisons of miRNAs expression and avoid the bias caused by different lenth between detected miRNAs and traditional referece genes. The present study has expanded the miRNA reference genes available for gene expression studies in trees under biotic stress.


Sign in / Sign up

Export Citation Format

Share Document