scholarly journals Harnessing a Novel Dyrk1a-Ablim2-MKL1 Regulatory Module in Megakaryocyte Morphogenesis to Enable Scalable Platelet "Pharming"

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3250-3250
Author(s):  
Kamaleldin E Elagib ◽  
Ashton Brock ◽  
Goar Mosoyan ◽  
Cara Clementelli ◽  
Lorrie L Delehanty ◽  
...  

Growing clinical demands for platelet transfusions combined with supply limitations have created shortages which are trending toward a global crisis. Major efforts have been taken to address key issues of platelet sources, storage, and utilization. Recent progress in ex vivo culture-based production of megakaryocytes (Mk) and platelets, "pharming," has highlighted the potential for novel, donor-independent sources amenable to antigenic editing and cryo-stockpiling. Such cultures can be easily initiated from umbilical cord blood (CB) progenitors, induced pluripotent stem cells (iPSC), or directly re-programmed somatic cells. The major roadblock associated with these Mk sources consists of their fetal ontogenic status, which is beneficial for expansion but severely limits platelet production. The ability to elicit in pre-expanded Mk an adult program of morphogenesis (polyploidization, enlargement, and proplatelet formation) would enable circumvention of this scalability barrier. A master regulator of adult Mk morphogenesis consists of the transcriptional coactivator MKL1 which undergoes nuclear translocation in response to RhoA-mediated actin polymerization, stimulated by thrombopoietin and environmental mechano-sensing. Nuclear MKL1 associates with the transcription factor SRF1 to upregulate cytoskeletal remodeling factors, including filamin A and Hic-5, that act as morphogenesis effectors. Our previous studies identified in infantile CB Mk a failure in MKL1 upregulation resulting from repression by the oncofetal RNA-binding factor IGF2BP3. Pharmacologic suppression of IGF2BP3 with BET inhibitors rescued MKL1 expression and improved platelet production but caused cycle arrest preventing polyploidization. As an alternative approach to abrogate the fetal blockade in Mk morphogenesis, we sought to promote MKL1 activity by targeting a kinase, Dyrk1a, which had been shown to restrain MKL1 from nuclear translocation. Treatment of infantile CB Mk with a variety of Dyrk1-selective inhibitors including harmine and EHT 1610 strongly enhanced polyploidization (p = 0.015 and 0.009 respectively), enlargement (p < 0.005) , and in vitro platelet release (2 fold each, p = 0.001 and 0.007 respectively), attaining levels seen with adult Mk. When xenotransplanted into NSG mice, harmine-treated CB Mk demonstrated enhanced capability for in vivo platelet release (about 5 fold, p = 0.016). CB stem cells expanded with the AHR antagonist SR1 and an iPSC-Mk cell line also responded to Dyrk1 inhibition with robustly increased morphogenesis. Several findings implicated MKL1 in this response: 1) induction of nuclear translocation by the inhibitors, 2) induction of target genes (filamin A and Hic-5) by the inhibitors, and 3) loss of response to inhibitors in Mkl1-ko murine progenitors. Supporting Dyrk1a as a relevant target, mice with Mk-specific loss of one Dyrk1a allele (Dyrk1aflox/wt;Pf4-Cre) displayed increases in platelet counts (p = 0.037) and marrow Mk polyploidization (p = 0.02). In addition, retroviral expression in human progenitors of a dominant negative Dyrk1a mutant K188R promoted Mk enlargement (p = 0.014). shRNA knockdowns could not be obtained due to toxicity of > ~60% loss of Dyrk1a. To determine mechanisms for Dyrk1a control of morphogenesis, we analyzed the actin cytoskeleton, a key regulator of MKL1. Dyrk1 inhibition in all types of Mk progenitors (adult, infantile, and iPSC) induced assembly of cortical filamentous actin (F-actin), as detected by Alexa594-phalloidin staining. Prior studies showed cytoskeletal binding by Dyrk1a and direct phosphorylation of F-actin regulators N-WASP and Ablim1. A survey of human marrow expression patterns for candidate Dyrk1a substrates (The Human Protein Atlas) identified Ablim2, as showing a Mk-specific, cortical staining pattern. Dyrk1 inhibition increased Ablim2 levels ~5-fold in CB Mk (p < 0.005), and immunofluorescence displayed a cortical distribution similar to F-actin. Lentiviral shRNA knockdown of Ablim2 abrogated all effects of Dyrk1 inhibition, blocking: F-actin formation, MKL1 nuclear translocation, activation of the MKL1 targets, and Mk morphogenesis. These findings thus delineate a novel Dyrk1a-Ablim2-MKL1 regulatory module in Mk morphogenesis that can be manipulated to address the problem of scaling ex vivo production and might also serve as a future in vivo therapeutic target for thrombocytopenia. Disclosures Eto: Megakaryon Co. Ltd.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgina Navoly ◽  
Conor J. McCann

AbstractEnteric neural stem cells (ENSC) have been identified as a possible treatment for enteric neuropathies. After in vivo transplantation, ENSC and their derivatives have been shown to engraft within colonic tissue, migrate and populate endogenous ganglia, and functionally integrate with the enteric nervous system. However, the mechanisms underlying the integration of donor ENSC, in recipient tissues, remain unclear. Therefore, we aimed to examine ENSC integration using an adapted ex vivo organotypic culture system. Donor ENSC were obtained from Wnt1cre/+;R26RYFP/YFP mice allowing specific labelling, selection and fate-mapping of cells. YFP+ neurospheres were transplanted to C57BL6/J (6–8-week-old) colonic tissue and maintained in organotypic culture for up to 21 days. We analysed and quantified donor cell integration within recipient tissues at 7, 14 and 21 days, along with assessing the structural and molecular consequences of ENSC integration. We found that organotypically cultured tissues were well preserved up to 21-days in ex vivo culture, which allowed for assessment of donor cell integration after transplantation. Donor ENSC-derived cells integrated across the colonic wall in a dynamic fashion, across a three-week period. Following transplantation, donor cells displayed two integrative patterns; longitudinal migration and medial invasion which allowed donor cells to populate colonic tissue. Moreover, significant remodelling of the intestinal ECM and musculature occurred upon transplantation, to facilitate donor cell integration within endogenous enteric ganglia. These results provide critical evidence on the timescale and mechanisms, which regulate donor ENSC integration, within recipient gut tissue, which are important considerations in the future clinical translation of stem cell therapies for enteric disease.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiao-Le Yu ◽  
Shing Chan ◽  
Marcus Kwong-Lam Fung ◽  
Godfrey Chi-Fung Chan

Abstract Background Majority of neuroblastoma patients develop metastatic disease at diagnosis and their prognosis is poor with current therapeutic approach. Major challenges are how to tackle the mechanisms responsible for tumorigenesis and metastasis. Human mesenchymal stem cells (hMSCs) may be actively involved in the constitution of cancer microenvironment. Methods An orthotopic neuroblastoma murine model was utilized to mimic the clinical scenario. Human neuroblastoma cell line SK-N-LP was transfected with luciferase gene, which were inoculated with/without hMSCs into the adrenal area of SCID-beige mice. The growth and metastasis of neuroblastoma was observed by using Xenogen IVIS 100 in vivo imaging and evaluating gross tumors ex vivo. The homing of hMSCs towards tumor was analyzed by tracing fluorescence signal tagged on hMSCs using CRI Maestro™ imaging system. Results hMSCs mixed with neuroblastoma cells significantly accelerated tumor growth and apparently enhanced metastasis of neuroblastoma in vivo. hMSCs could be recruited by primary tumor and also become part of the tumor microenvironment in the metastatic lesion. The metastatic potential was consistently reduced in lung and tumor when hMSCs were pre-treated with stromal cell derived factor-1 (SDF-1) blocker, AMD3100, suggesting that the SDF-1/CXCR4 axis was one of the prime movers in the metastatic process. Conclusions hMSCs accelerated and facilitated tumor formation, growth and metastasis. Furthermore, the homing propensity of hMSCs towards both primary tumor and metastatic loci can also provide new therapeutic insights in utilizing bio-engineered hMSCs as vehicles for targeted anti-cancer therapy.


2004 ◽  
Vol 167 (6) ◽  
pp. 1113-1122 ◽  
Author(s):  
Sergei A. Kuznetsov ◽  
Mara Riminucci ◽  
Navid Ziran ◽  
Takeo W. Tsutsui ◽  
Alessandro Corsi ◽  
...  

The ontogeny of bone marrow and its stromal compartment, which is generated from skeletal stem/progenitor cells, was investigated in vivo and ex vivo in mice expressing constitutively active parathyroid hormone/parathyroid hormone–related peptide receptor (PTH/PTHrP; caPPR) under the control of the 2.3-kb bone-specific mouse Col1A1 promoter/enhancer. The transgene promoted increased bone formation within prospective marrow space, but delayed the transition from bone to bone marrow during growth, the formation of marrow cavities, and the appearance of stromal cell types such as marrow adipocytes and cells supporting hematopoiesis. This phenotype resolved spontaneously over time, leading to the establishment of marrow containing a greatly reduced number of clonogenic stromal cells. Proliferative osteoprogenitors, but not multipotent skeletal stem cells (mesenchymal stem cells), capable of generating a complete heterotopic bone organ upon in vivo transplantation were assayable in the bone marrow of caPPR mice. Thus, PTH/PTHrP signaling is a major regulator of the ontogeny of the bone marrow and its stromal tissue, and of the skeletal stem cell compartment.


2015 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
MarwaM Ellithy ◽  
MohamedS Ayoub ◽  
EffatA Abbas ◽  
MohamedA Abd El Hamid ◽  
HouryM Baghdadi ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Terumasa Umemoto ◽  
Masayuki Yamato ◽  
Jun Ishihara ◽  
Yoshiko Shiratsuchi ◽  
Mika Utsumi ◽  
...  

AbstractThroughout life, one's blood supply depends on sustained division of hematopoietic stem cells (HSCs) for self-renewal and differentiation. Within the bone marrow microenvironment, an adhesion-dependent or -independent niche system regulates HSC function. Here we show that a novel adhesion-dependent mechanism via integrin-β3 signaling contributes to HSC maintenance. Specific ligation of β3-integrin on HSCs using an antibody or extracellular matrix protein prevented loss of long-term repopulating (LTR) activity during ex vivo culture. The actions required activation of αvβ3-integrin “inside-out” signaling, which is dependent on thrombopoietin (TPO), an essential cytokine for activation of dormant HSCs. Subsequent “outside-in” signaling via phosphorylation of Tyr747 in the β3-subunit cytoplasmic domain was indispensable for TPO-dependent, but not stem cell factor-dependent, LTR activity in HSCs in vivo. This was accompanied with enhanced expression of Vps72, Mll1, and Runx1, 3 factors known to be critical for maintaining HSC activity. Thus, our findings demonstrate a mechanistic link between β3-integrin and TPO in HSCs, which may contribute to maintenance of LTR activity in vivo as well as during ex vivo culture.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Vikrant K Bhosle ◽  
José Carlos Rivera ◽  
Tianwei (Ellen) Zhou ◽  
Samy Omri ◽  
Melanie Sanchez ◽  
...  

Abstract Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chiara Garrovo ◽  
Natascha Bergamin ◽  
Dave Bates ◽  
Daniela Cesselli ◽  
Antonio Paolo Beltrami ◽  
...  

Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD) optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells.


2004 ◽  
Vol 78 (3) ◽  
pp. 1219-1229 ◽  
Author(s):  
Xian-Yang Zhang ◽  
Vincent F. La Russa ◽  
Jakob Reiser

ABSTRACT Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.


Sign in / Sign up

Export Citation Format

Share Document