scholarly journals Exome Sequencing of Relapsed Multiple Myeloma Combined with Pooled CRISPR/Cas9 Screens Identifies Gene Mutations Associated with Drug-Specific Resistance

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 809-809
Author(s):  
Stephan Bohl ◽  
Laura K. Schmalbrock ◽  
Imke Bauhuf ◽  
Anna Dolnik ◽  
Tamara J. Blätte ◽  
...  

Lenalidomide, bortezomib, melphalan and dexamethasone are standard drugs for the treatment of multiple myeloma (MM). Although many patients initially respond to treatment regimens including these drugs, the majority ultimately relapses due to the development of resistance of the MM cells, what may result from acquired genetic alterations. Here we performed fluorescence in situ hybridization (FISH) and whole exome sequencing (WES) on 16 paired pre-treatment/ progression MM samples followed by functional validation through CRISPR/Cas9-based screens to identify gene mutations that are associated with resistance. Treatment between two samples consisted of lenalidomide (n=16), bortezomib (n=14), dexamethasone (n=16) and melphalan (n=9). Cytogenetic analyses by FISH revealed that the majority of translocations (7 of 10) and chromosomal gains and deletions (22 of 28) were concordant between pre-treatment and relapse samples. In contrast, gene mutations assessed by WES were highly variable: of the total of 794 identified mutations 6% (n=46) were present only at diagnosis, 59% (n=474) at both time points and 35% (n=274) specifically at relapse with an increase of the median number of mutations from 29 (range 9-103) in pre-treatment to 47 (range 13-110) in progression samples (figure 1A). Recurrent mutations detected pretreatment were in general stable at progression: NRAS (3/3), KRAS (4/4), IGLL5 (3/3) and DIS3 (2/3). Only very few of the newly acquired gene mutations at progression were recurrent: TP53 (n=4), DNAH5 (n=4) and WSCD2 (n=3) while the remaining were non-recurrent. In order to investigate the functional impact of relapse-specific gene mutations on drug resistance we performed pooled CRISPR-Cas9-based knockout screens (figure 1B). We included 160 gene mutations that fulfilled the following criteria: 1) a variant allele fraction (VAF) of >20% at the time of progression, 2) found exclusively in progression samples or had a more than 2-fold increase in VAF at progression as compared to pre-treatment, 3) predicted to be loss-of-function. In addition, we included genes found recurrently mutated in relapsed MM in previously published studies. Resistance screens were performed in three different MM cell lines (MM1S, NCIH-929, KMS27) with 4 sgRNA per gene in the presence of lenalidomide, dexamethasone, melphalan, bortezomib or DMSO as a control. None of the sgRNAs included in the screen conferred resistance to all four drugs. In contrast, we identified several genes whose inactivation caused resistance to a specific drug. For lenalidomide, the top hits were members of the CRBN-CRL4 E3 ubiquitin ligase, the primary target of IMiDs, including CRBN, CUL4B and DDB1. CRISPR-mediated inactivation of these genes was specifically associated with lenalidomide resistance since sensitivity towards other drugs was not affected. In addition, we found sgRNAs targeting SYT5, a membrane protein involved in Ca2+-dependent exocytosis, to be enriched in lenalidomide-treated cells that so far has not been related to lenalidomide resistance. SgRNAs targeting TP53 were also weakly enriched after lenalidomide treatment in two of the three cell lines but conferred a high level of resistance to melphalan in all three cell lines (figure 1C). Consistently, three of the four TP53 mutations identified by WES were detected in samples obtained after cytotoxic chemotherapy and one after 3 years of treatment with lenalidomide/dexamethasone. Our screens also revealed an increased susceptibility to melphalan by inactivation of ATM, FANCA, BIRC3, and BRCC3, all involved in DNA damage repair. The top sgRNAs causing resistance to dexamethasone were directed against ANKMY2 and BIRC3 in two cell lines (MM1S and NCI-H929). For bortezomib, inactivation of only one gene, TMC2, encoding a transmembrane protein was associated with resistance in two cell lines whereas BIRC3 inactivation provided increased susceptibility to bortezomib. In conclusion, by combination of comprehensive genetic analyses of tumor samples before and after treatment with functional genetic screens we found mutations that are causally linked with drug-specific resistance and sensitivity. These results may help to personalize therapy in patients with multiple myeloma. Figure 1 Disclosures Bohl: Pfizer: Honoraria. Döhner:Celgene, Novartis, Sunesis: Honoraria, Research Funding; AbbVie, Agios, Amgen, Astellas, Astex, Celator, Janssen, Jazz, Seattle Genetics: Consultancy, Honoraria; AROG, Bristol Myers Squibb, Pfizer: Research Funding. Bullinger:Astellas: Honoraria; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Daiichi Sankyo: Honoraria; Gilead: Honoraria; Hexal: Honoraria; Janssen: Honoraria; Jazz Pharmaceuticals: Honoraria; Menarini: Honoraria; Novartis: Honoraria; Pfizer: Honoraria; Sanofi: Honoraria; Seattle Genetics: Honoraria; Bayer: Other: Financing of scientific research; Abbvie: Honoraria; Amgen: Honoraria. Krönke:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 190-190
Author(s):  
Shady Adnan Awad ◽  
Helena Hohtari ◽  
Komal Kumar Javarappa ◽  
Tania Brandstoetter ◽  
Daehong Kim ◽  
...  

Introduction: The oncoprotein Bcr-Abl has two major isoforms, depending on the breakpoint in BCR gene, p190 and p210. While p210 is the hallmark of chronic myeloid leukemia (CML), p190 occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) patients. p190 occurs as a sole transcript in 1-2% CML patients, associated with distinct features like monocytosis and frequent additional cytogenetic abnormalities (ACA) at diagnosis. It also confers a risk of treatment failure and progression in chronic phase (CP) CML patients. However, the underlying mechanisms are largely unknown. Here we explore the characteristics of p190 and p210 in CML and ALL patients using next generation sequencing, phospho-flowcytometry and high throughput drug testing. Patients and methods: Peripheral blood mononuclear cells (PMNC) were collected at diagnosis from four CP-CML patients harboring p190 isoform from Helsinki University Hospital. Genetic alterations were identified by whole exome sequencing. RNA sequencing was employed to analyze transcriptional profiles of p190 CML (n=3) in contrast to p210 CML patients (n=4). A thorough transcriptional, phosphorylation and drug sensitivity profiling were applied to five p190- and three p210-expressing Ph+ALL patients. Expression alterations were further characterized in two cell line models mimicking BCR-ABL positive leukemia (Ba/F3 and HPCLSK). Phosphorylation profiles were analyzed by flowcytometry and phospho-array (Tyrosine Phosphorylation ProArray, Full Moon Biosystems). For drug sensitivity and resistance testing (DSRT), a custom plate set comprising 75 approved and investigational oncology drugs was used for patient samples and more extensive 528-drugs plates were used for the cell lines. Results: CML patients with p190 had a median age of 72.5 years at the diagnosis (range: 50-80) and all received imatinib as a frontline treatment. Only one patient achieved a fluctuating major molecular response (MMR) by 12 months while the rest of the patients showed primary resistance to treatment and were shifted to a 2nd line TKI, nilotinib (n=2) or proceeded to HSCT (n=1). By exome sequencing we identified 26 variants in p190-CML samples (median per patient=7, range: 2-10), including variants in ASXL1, DNMT3A and KDM4D genes. RNA-sequencing analysis identified 19 and 97 dysregulated genes (Q <0.05) between p190- and p210 in CML and Ph+ ALL cells respectively. In CML, enrichment analysis revealed upregulation of TNF, interferon (IFN), IL1-R and Toll-like receptor (TLR) signaling, TP53-related, cell cycle and apoptosis pathways. Among Ph+ ALL samples, many CML-related genes were upregulated in samples encompassing p210 while IFN-, TP53- and cell cycle-related molecules were upregulated in p190 samples. p190 samples exhibited hyper-phosphorylation of Src kinase compared to p210 samples. DSRT results also revealed increased sensitivity of primary Ph+ ALL-p190 cells to Src-inhibitors (dasatinib and saracatinib), glucocorticoids and MDM2 inhibitors/TP53 activators (SAR405838 and idasanutlin). Regarding cell lines, Ba/F3-p190 showed the upregulation of interferon signaling pathways compared to p210. Src was also hyperphosphorylated in both Ba/F3 and HPCLSK p190 models. In addition to glucocorticoids and Src-inhibitors, compounds blocking the activity of the inhibitors of apoptosis protein (IAP) family were highly effective at reducing the viability of p190 compared to p210 cells in both cell lines. Conclusions: In CML, p190 isoform of BCR-ABL1 is associated with distinct features and should be considered as a high-risk group. Combining clinical, genomic, phosphorylation and drug sensitivity data, we demonstrated that p190 activates specific cancer pathways, notably Src signaling and interferon pathways. Data also suggests that CML patients with p190 could benefit from broad spectrum TKI with Src inhibiting activity or combination of TKI with MDM2- or IAP-inhibitors. Disclosures Heckman: Orion Pharma: Research Funding; Celgene: Research Funding; Novartis: Research Funding; Oncopeptides: Research Funding. Porkka:Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Research Funding. Mustjoki:Novartis: Research Funding; Pfizer: Research Funding; BMS: Honoraria, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2209-2209
Author(s):  
Sinan Xiong ◽  
Jianbiao Zhou ◽  
Tze King Tan ◽  
Sabrina Hui-Min Toh ◽  
Kalpnaa Balan ◽  
...  

Abstract Background: Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. Despite recent progress in stem-cell transplantation, high-dose chemotherapy and novel therapies, MM remains incurable and most patients experience relapse. In addition of genetic alterations, growing evidence has suggested that alterations in epigenetic landscape contribute to pathogenesis of MM. Super enhancers (SE) are large clusters of putative enhancers with aberrantly strong binding of mediators and transcription-regulating proteins. MM cells are highly dependent on unfolded protein response (UPR) signaling pathways due to high level of endoplasmic reticulum (ER) stress. Phosphorylation of eIF2α can attenuate protein translation. The PPP1R15B (denoted as R15B hereafter) gene encodes a regulatory subunit of an eIF2α-specific phosphatase complex. In this study, we identified SE-driven oncogenes specific in MM with a particular focus on a candidate SE-associated gene R15B, whose functional roles in MM remain largely elusive. Methods: We performed H3K27Ac ChIP-seq on MM cell lines, primary MM patient samples and normal CD138+ plasma cells, memory B cells (controls). ROSE analysis was used to systematically annotate SEs and their associated genes between tumors and controls. A combination of public data mining, RNA interference (RNAi), overexpression and CRISPR/Cas9 technologies followed by functional assays were conducted to determine the oncogenic effects of R15B in MM. Transcriptome analysis of MM cell line NCI-H929 with R15B knockdown and scrambled control was performed. To further study the interactions between SE and its promoters, we are currently working on highly integrative chromatin immunoprecipitation (HiChIP) followed by sequencing. Results: We have identified R15B as one of the SE-associated genes specific to MM patient samples and MM cell lines. The expression of R15B was 6- to 50-fold higher in a panel of 8 MM cell lines than normal controls. SE activity was correlated with the expression level of R15B. Higher expression of R15B predicted poor overall survival of MM patients, suggesting its clinical relevance in MM pathogenesis. Knockdown and knockout of R15B significantly reduced cell viability, clonogenicity and induced G2/M phase cell cycle arrest. Gene Ontology (GO) enrichment and pathway analysis of downregulated genes in response to R15B knockdown indicates that these genes are significantly associated with G2/M checkpoint hallmark, oxidative phosphorylation, unfolded protein response and E2F1-related pathways. Loss of R15B may induce apoptosis via activation of UPR pro-apoptotic executors PUMA and NOXA. ChIP-qPCR assays indicates that transcription factor C/EBP-β is strongly enriched at R15B SE region. Furthermore, we examined the therapeutic effects of Salubrinal, a selective inhibitor of eIF2α phosphorylation, on MM cells. Salubrinal inhibited MM cell proliferation in a dose-dependent manner, and MM cell lines with higher R15B expression were more sensitive to Salubrinal than those with lower R15B level. Conclusions: Our integrative approaches identified R15B as a novel SE-driven oncogene, and may form a positive feedback loop with C/EBP-β. Salubrinal selectively inhibits proliferation of MM cells with high R15B expression. Hence, we propose that targeting R15B may serve as a new approach for effective anti-myeloma therapy, which warrants further clinical investigation. Disclosures Chng: Novartis: Honoraria; Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Abbvie: Honoraria; Amgen: Honoraria, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-5
Author(s):  
Ehsan Malek ◽  
E. Ricky Chan ◽  
Daniel Qu ◽  
Jane Reese ◽  
Robert Fox ◽  
...  

Introduction: Multiple myeloma (MM) is a plasma cell neoplasm associated with heterogeneous somatic alterations. Despite the development of novel anti-myeloma agents that have significantly prolonged patient survival, disease relapse remains a daunting problem. Our goal was to employ whole-exome sequencing (WES) to better describe the mutational landscape in MM beyond the tumor cell and identify genomic factors that might predict relapse. WES was performed using autograft samples obtained from MM patients that were then treated with high dose melphalan and autologous hematopoietic cell transplant (HCT). We identified a panel of genes that were most frequently mutated in all patients and then identified those genes mutated with greater frequency in patients that relapsed. A relapse burden signature was generated based upon the genes that were most frequently mutated genes in relapsed patients. Finally, the relapse burden signature was correlated with patient progression-free survival (PFS) and overall survival (OS) following autologous HCT. Methods. DNA was extracted from one ml of cryopreserved, mobilized hematopoietic cell product obtained from patients (N=93) that underwent HCT and was provided by the Case Comprehensive Cancer Center Hematopoietic Biorepository Core. Targeted sequencing was performed using the Tempus xE whole exome platform (Tempus, Chicago, IL). Variants were identified using a variant allele frequency (VAF) ≥0.1 for each sample. Variants were tabulated for each gene in each patient. Patients were grouped according to their relapse status; "No Relapse" (N=39) and "Relapse" (N=54) which corresponded to their post-HCT outcome. Relapse time was defined as time from transplant to event. Variants identified in each gene and patient group were counted and ranked. A relapse burden signature was defined and included twenty-two genes over-represented in the relapse group compared to the non-relapse group by > 10%. Genes in the relapse burden signature were subjected to gene set enrichment analysis (GSEA) and cross referenced against Gene Ontology (GO) categories. PFS and OS were defined as the time from transplant until the event of interest, with censoring at time of last follow up. Patients were regrouped according to their mutation burden in the relapse signature genes ("High burden" defined as >=six signature genes with variants) and their OS and PFS were analyzed with an R package (survival) to generate Kaplan-Meier curves and statistical significance based on a Chi-square test between low and high burden patients. Results: In total, 3,523 genes were identified as containing variants. Table 1 lists the top thirty genes that were identified and ranked based upon total number of mutations (mutational count) and most frequently mutated in relapsed and non-relapsed patients (sample count). We then identified those genes that were more frequently mutated by at least 10% in relapsed patients compared to non-relapsed patients (Fig. 1A). GSEA revealed that the relapse burden gene signature was associated with protein O-linked glycosylation, glycan processing, Golgi lumen and innate immune response activating cell surface receptor signaling pathways (Table 2). Interestingly, multiple mucin family members (Muc2, Muc3A, Muc12 and Muc19) were represented in the relapse burden signature. GO analysis indicated that the individual mucin genes were associated with the same signaling pathways that had been associated with the relapse burden signature by GSEA (Table 3). Importantly, a high relapse burden signature was correlated with a statistically significant reduction in both PFS and OS (Fig. 1B, C). Conclusion: Taken together, our results support the feasibility of WES to generate a relapse burden signature that predicts the risk of MM patients for relapse following HCT. Moreover, the mutational landscape associated with relapse, i.e. the specific genes mutated, has provided insights on the mechanisms of relapse. It is noteworthy that the relapse burden signature genes identified here were mutated at a much greater frequency than genes associated with clonal hematopoiesis of indeterminate potential (CHIP). The identification of patient subgroups at heightened risk of relapse can better guide treatment decisions. Future studies will be conducted to evaluate the effect of pathways identified here on myeloma cell survival and to validate actionable therapeutic targets. Disclosures Malek: Bluespark: Research Funding; Takeda: Other: Advisory board , Speakers Bureau; Medpacto: Research Funding; Janssen: Other: Advisory board, Speakers Bureau; Sanofi: Other: Advisory board; Clegene: Other: Advisory board , Speakers Bureau; Amgen: Honoraria; Cumberland: Research Funding. Caimi:Amgen: Other: Advisory Board; Bayer: Other: Advisory Board; Verastem: Other: Advisory Board; Kite pharmaceuticals: Other: Advisory Board; Celgene: Speakers Bureau; ADC therapeutics: Other: Advisory Board, Research Funding. de Lima:Celgene: Research Funding; BMS: Other: Personal Fees, advisory board; Incyte: Other: Personal Fees, advisory board; Kadmon: Other: Personal Fees, Advisory board; Pfizer: Other: Personal fees, advisory board, Research Funding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 785-785 ◽  
Author(s):  
Ruben Carrasco ◽  
Giovanni Tonon ◽  
Cameron Brennan ◽  
Alexei Protopopov ◽  
Raktim Sinha ◽  
...  

Abstract Multiple Myeloma (MM) is characterized by a clonal proliferation of abnormal plasma cells in the bone marrow and is among the most frequent and lethal hematological diseases. In spite of significant effort towards the identification of the molecular events leading to this malignancy, the genetic alterations responsible for the pathogenesis of this disease remain poorly understood. Regional copy number alterations (CNAs) in cancer genomes have been among the most informative structural changes in cancer and have led to the discovery of many oncogenes and tumor supressor genes. Using array comparative genomic hybridization (array-CGH) and expression microarray technologies we have analyzed a large collection of cell lines and clinically annotated primary tumors. This high-resolution genomic analysis has identified all previously reported regional gains and losses as well as many novel highly recurrent genetic loci with potential biological and clinical relevance. In particular, we have identified an amplification at chromosome 1q21 as one of the most recurrent genetic changes in cell lines and in a subgroup of primary tumors. This chromosomal change has been previously implicated with disease progression. Analysis across several cell lines has allowed the identification of a Minimal Common Region (MCRs) of amplification at 1q21. Correlation between DNA copy number changes and expression profiling data has identified a limited set of candidate genes within this MCR that are amplified and overexpressed. Using shRNAi technology we have identified BCL-9 as a candidate gene residing at the 1q21 MCR. In vitro and in vivo functional data about the role of BL-9 will be presented. These data will provide critical understanding on the diverse pathways leading to Multiple Myeloma progression.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 783-783
Author(s):  
Jaime O. Claudio ◽  
Razi Khaja ◽  
Lihua Zhuang ◽  
Meenakshi Bali ◽  
Kamalanayani Sivananthan ◽  
...  

Abstract In approximately 50% of Multiple Myeloma (MM), translocation of non random genes into the IgH locus is believed to be the seminal event in the pathogenesis of the disease. Another 50% of cases are hyperdiploid and trisomic to certain autosomes, but do not harbor any translocation and thus are believed to have genetic alterations in unidentified loci. These observations, together with the finding of somatic mutations in FGFR3, N- and K-RAS, MYC, TP53 and CDKN2C/p18INK4C during the later stages of MM indicate that defective signaling pathways likely play a role in the progression of this malignancy. Of relevance then, in recent years recurrent mutations in kinases have frequently been implicated in malignancies including notably colon cancer and melanoma. We have therefore begun a comprehensive effort to sequence the tyrosine kinome for mutations and genetic polymorphisms in MM. Of particular interest are 90 receptor tyrosine kinases, 43 receptor tyrosine kinase-like, 5 receptor guanylate cyclase, and a lipid kinase. We report here results from our pilot high throughput exon scanning in 32 human MM cell lines which initially focused on 13 kinases known to be somatically mutated in human cancers. To date we have expanded this effort to assess 30 genes with sequence obtained which currently spans 80% coverage of the kinase domains of these genes. A total of 1.9 million bp have been sequenced across 235 exons. No recurrent mutations have been identified in the kinase domains of the cancer-associated genes: SRC, ILK1, KIT, GUCY2F, PDGFRA; in the genetic disorder-associated kinases: BTK, EPHA4, LAMA2, EPHB6, ACVR2; and in the mutation hot spots of frequently mutated cancer gene PIK3CA. A novel missense mutation is however identified upstream of the kinase domain of FGFR3 changing a Ser residue to Arg at codon 433. This residue, which is conserved across species and in FGFR1 and FGFR2, has not been reported in myeloma and in thanatophoric dysplasia, but the biological significance of this mutation is unknown. Several single nucleotide polymorphisms were identified in the coding regions of some of these kinases. Notably, synonymous polymorphisms in the kinase domains of EPHA4, PDGFRA3, KIT, MLK1, ILK1, NTRK3, FLT3, ABL1, FES, MLK4, and EGFR1 were identified that changed a codon but not the amino acid. More importantly, we identified non-synonymous amino acid variations in the kinase domains of EPHA4, GUCY2F, PTK2, and PIK3CA genes that are more likely to effect variability in the activity of these kinases. In summary, no recurrent kinase mutations of significance in Myeloma development or progression have yet been identified. Sequencing of the known cancer associated kinases in MGUS and hyperdiploid MM patients is now underway and our data set is being expanded to include all 139 kinases.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1729-1729
Author(s):  
Melissa G Ooi ◽  
Robert O'Connor ◽  
Jana Jakubikova ◽  
Justine Meiller ◽  
Steffen Klippel ◽  
...  

Abstract Abstract 1729 Poster Board I-755 Background Multidrug transporters are energy-dependent transmembrane proteins which can efflux a broad range of anticancer drugs and thereby play a role in resistance to the actions of substrate agents. Classically, three transporters, p-glycoprotein (Pgp; MDR-1; ABCB1), multidrug resistant protein-1 (MRP-1; ABCC1) and breast cancer resistance protein (BCRP; MXR; ABCG2), have been found to have the broadest substrate specificity and a strong correlation with drug resistance in vitro and in vivo in many models and forms of cancer. We have sought to characterize the interaction of bortezomib with these transporters and thereby explore the potential for these agents to play a role in resistance. Bortezomib is a novel proteosome inhibitor with significant activity in multiple myeloma, although subsets of patients remain refractory to the activity of the drug. Hence, better characterization of the interactions of this drug with classical resistance mechanisms may identify improved treatment applications. Methods and Results We investigated the role of these transporters by using isogenic cell line models which are resistant due to overexpression of a particular transporter: DLKP lung cancer cell line that overexpresses MRP-1; DLKP-A which overexpresses Pgp; and DLKP-SQ-Mitox which overexpresses BCRP. DLKP-A cells exhibited a 4.6-fold decrease in responsiveness to bortezomib compared to parental DLKP cells. In DLKP-SQ-Mitox, bortezomib-induced cytotoxicity was comparable to DLKP. When bortezomib was combined with elacridar, a Pgp and BCRP inhibitor, significant synergy was evident in DLKP-A (100% viable cells with single agent treatment versus 11% with the combination), but not DLKP-SQ-Mitox. Sulindac, an MRP-1 inhibitor, combined with bortezomib failed to produce any synergy in MRP-1 positive DLKP cells. Conversely, combination assays of Pgp substrate cytotoxics such as doxorubicin with Bortezomib were largely additive in nature. This indicates that bortezomib has little, if any, direct Pgp inhibitory activity, as combinations of a traditional Pgp inhibitor (such as elacridar) and doxorubicin would show marked synergy rather than just an additive effect in Pgp positive cells. To further characterize the extent of this interaction with Pgp, we conducted cytotoxicity assays in cell lines with varying levels of Pgp overexpression. NCI/Adr-res (ovarian cancer, high Pgp overexpression), RPMI-Dox40 (multiple myeloma, moderate Pgp overexpression) and A549-taxol (lung cancer, low Pgp overexpression). The combination of bortezomib and elacridar that produced the most synergy was in cell lines expressing moderate to high levels of Pgp expression. Cell lines with lower Pgp expression produced an additive cytotoxicity. We next examined whether bortezomib had any direct effect on Pgp expression. In RPMI-Dox40 cells, Pgp expression is reduced in a time-dependent manner with bortezomib treatment. Conclusions Our studies therefore show that bortezomib is a substrate for Pgp but not the other drug efflux pumps. In tumor cells expressing high levels of Pgp, the efficacy of bortezomib is synergistically enhanced by combinations with a Pgp inhibitor, while bortezomib treatment itself can reduce the expression of Pgp. This study suggests that in the subset of patients with advanced multiple myeloma or solid tumors which express high levels of Pgp, inhibition of its function could contribute to enhanced responsiveness to bortezomib. Disclosures Richardson: millenium: Membership on an entity's Board of Directors or advisory committees, Research Funding; celgene: Membership on an entity's Board of Directors or advisory committees, speakers bureau up to 7/1/09; MLNM: speakers bureau up to 7/1/09. Mitsiades:Millennium Pharmaceuticals : Consultancy, Honoraria; Novartis Pharmaceuticals : Consultancy, Honoraria; Bristol-Myers Squibb : Consultancy, Honoraria; Merck &Co: Consultancy, Honoraria; Kosan Pharmaceuticals : Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; PharmaMar: licensing royalties ; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono : Research Funding; Sunesis Pharmaceuticals: Research Funding. Anderson:Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; Biotest AG: Consultancy, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2999-2999 ◽  
Author(s):  
Samantha Pozzi ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
Doris M Nabikejje ◽  
Kishan Patel ◽  
...  

Abstract Abstract 2999 Multiple myeloma (MM) is a treatable but incurable hematological malignancy and novel targeted therapies are under investigation. MM is characterized by dysregulation of the cell cycle, consequent to the overexpression of cyclins and their related kinases, the cyclins dependent kinases (CDK), a group of Ser/Thr proteine kinases. CDKs represent a promising therapeutic target, and inhibitors have been developed for anticancer treatment. We have previously studied seliciclib in the context of MM. CYC065, a second generation CDK inhibitor is the more potent derivative of seliciclib. It is mainly active on CDK 2, 5 and 9, involved in progression of the cell cycle and protein transcription. It has already shown promising results in preclinical studies in breast cancer and acute leukemia. We tested CYC065 in in vitro experiments in MM. Our preliminary data in 7 MM cell lines showed cytotoxicity of CYC065, both in MM cell lines sensitive as well as resistant to conventional chemotherapy, with an IC50 ranging between 0.06 and 2μ M, at 24 and 48h. Tritiated thymidine uptake assay confirmed the antiproliferative effects of CYC065 in MM, and its ability to overcome the growth advantage conferred by co-culture with bone marrow stromal cells derived from MM patients, and cytokines like interleukin 6 (10ng/ml) and insulin like growth factor-1 (50ng/ml). The anti-proliferative effect was evident both at 24 and 48h, starting at concentrations as low as 0.015μ M. The AnnexinV/PI assay in the MM1.s cell line confirmed CYC065's ability to induce apoptosis in a time dependent manner starting at 9 hours of treatment, at a concentration of 0.125 μ M, inducing 82% of apoptosis after 48h of exposure. Cell cycle analysis in the same MM1.s cell line showed an increase of subG1 phase, starting at 9 hours of treatment, at 0.125 μ M of CYC065. Preliminary results of western blot analysis confirmed the apoptotic effect of CYC065 in the MM1s cell line, highlighted by the cleavage of caspase 3, 8, 9 and PARP. The compound was tested in primary CD138+ cells isolated from three refractory MM patients, confirming its efficacy at 0.125 μ M, both at 24 and 48h. Comparative analysis in PBMCs from normal donors, for the evaluation of the drug toxicity is ongoing and will be presented. In conclusion our preliminary data confirm the efficacy of CYC065 in MM cell lines and primary MM cells, at nanomolar concentrations. Ongoing mechanistic and in vivo studies will delineate its role in the now increasing spectrum of CDK inhibitors in MM and better define its potential for clinical development in MM. Disclosures: Green: Cyclacel: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Acetylon: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1831-1831 ◽  
Author(s):  
Michael Mangone ◽  
Luigi Scotto ◽  
Enrica Marchi ◽  
Owen A. O'Connor ◽  
Hearn J. Cho

Abstract Abstract 1831 Multiple myeloma (MM) is the second most common hematologic malignancy. Although there are effective new agents that can induce remission, relapse is inevitable and the disease is currently incurable. Progress in the treatment of this disease demands development of novel therapeutics and identification of functional biomarkers that may be used to distinguish tumors that are susceptible to specific targeted agents, creating a “personalized” therapeutic strategy for individual patients. We investigated these principles with anti-folates, which are not commonly used in MM but have demonstrated activity in this disease. Pralatrexate (PDX, 10-propargyl 10-deazaaminopterin) is a folate analogue that was rationally designed to have high affinity for Reduced Folate Carrier (RFC)-1, an oncofetal protein expressed in many cancers that actively transports folates into cells. PDX induced dose-dependent apoptotic cell death in a subset of human myeloma cell lines (HMCL) and CD138+ MM cells isolated from a clinical specimen. In sensitive cell lines, PDX exhibited 10-fold greater potency compared to the structurally related drug methotrexate (MTX). PDX induced dose-dependent, intrinsic apoptosis in sensitive HMCLs, characterized by cleavage of caspase-3 and -9 and accompanied by the loss of full-length Mcl-1, a Bcl-2 family protein that plays a critical role in drug-induced apoptosis in MM. Furthermore, the activity of PDX is not abrogated by the presence of exogenous interleukin-6 or by co-culture with HS-5 bone marrow stromal cells, both of which exert powerful survival effects on MM cells and can antagonize apoptosis in response to some cytotoxic chemotherapy drugs. Sensitivity to PDX-induced apoptosis correlated with higher relative levels of RFC-1 mRNA in sensitive compared to resistant HMCL. Resistant HMCL also exhibited a dose-dependent up-regulation of dihydrofolate reductase (DHFR) protein, a primary molecular target for anti-folates, in response to PDX exposure, whereas sensitive HMCL did not. These changes in functional folate metabolism biomarkers, high baseline RFC-1 expression and upregulation of DHFR in response to PDX, appeared to be mutually exclusive to sensitive or resistant HMCL, respectively. Importantly, PDX was also effective against sensitive HMCL in vivo in a novel mouse xenograft model. NOD/Shi-scid/IL-2Rγnull (NOG) mice were inoculated with MM.1s HMCL stably transduced to express both GFP and luciferase (GFP-luc). GFP-luc MM.1s cells engrafted into the long bones, pelvis, and vertebral column of NOG mice within 4–7 days after injection of cells, as assessed by in vivo bioluminescent imaging. Treatment with PDX resulted in a significant reduction in tumor burden after two doses. These results demonstrate that PDX has potent anti-myeloma activity in vitro and in vivo, and that RFC-1 expression and DHFR upregulation are robust functional biomarkers that may identify patients who are likely to benefit from PDX therapy. These data support further exploration of PDX therapy in clinical trials for MM and investigation of folate metabolism biomarkers as indices for treatment with this class of drugs. Improved anti-folates such as PDX are a promising class of agents that may be a valuable addition to the arsenal against MM. Disclosures: O'Connor: Celgene: Consultancy, Research Funding; Merck: Research Funding; Novartis: Research Funding; Spectrum: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2917-2917
Author(s):  
Jennifer Li ◽  
Andrew Leu ◽  
Mingjie Li ◽  
Ethan D Hobel ◽  
Kevin Delijani ◽  
...  

Abstract Abstract 2917 The inhibitory Fc receptor, Fc γRIIb, is expressed on plasma cells, controls their persistence in the bone marrow (BM) and their ability to produce serum Ig. Activation of Fc γRIIb leads to the phosphorylation of ITIM and recruitment of SH2-containing inositol 5'-phosphatase (SHIP) in plasma cells. Immunoreceptor tyrosine-based activation motif (ITAM) and ITIM provide the basis for two opposing signaling modules that duel for control of plasma cell activation. Fc γRIIb-mediated SHIP phosphorylation activates downstream ITAM or ITIM signaling. To determine whether multiple myeloma (MM) cells express Fc γRIIb, we performed immunohistochemical staining on bone marrow mononuclear cells from MM patients and controls. We found that not only CD20+ B cells expressed Fc γRIIb but more importantly CD138+ cells from MM patients also showed expression of this receptor. Next, we examined whether Fc γRIIb was present and expressed in CD138+ primary MM cells purified from fresh MM BM and the MM cell lines MM1s, RPMI8226, and U266 using PCR and RT-PCR on DNA and mRNA, respectively. We focused on the transmembrane domain of the Fc γRIIb gene with four primers from different parts of this domain since this portion plays a critical role in this receptor's function. The MM cell lines expressed different amounts of Fc γRIIb. Notably, we found that 17% (5/30) of MM patients showed absence of Fc γRIIb both using RT-PCR for mRNA and PCR for DNA. Moreover, use of these same primers on nonmalignant PBMCs from the MM patients also showed absence of this gene in the same five patients. As a result of these findings, we are currently sequencing Fc γRIIb in MM patients to determine if additional patients show mutational changes that affect the function of this receptor. We also further determined SHIP-1 phosphorylation using Western blot analysis since this protein mediates downstream signaling of Fc γRIIb. Following stimulation with Fc complexes, phosphorylation of SHIP-1 was markedly reduced in MM tumor cells compared to normal CD20+ B cells. Interestingly, the patients with missing Fc γRIIb expressed higher levels of SHIP-1 gene expression compared to patients with normal Fc γRIIb expression. We investigated the IgG-binding ability of MM patients (n=33) and normal donors (n=33) to Fc γRIIb. Each serum sample was incubated with cells from MHC1, a cell line that specifically expresses Fc γRIIb but not Fc γRI and Fc γRIIa. The results showed MM patients' serum IgG have much lower Fc γRIIb-binding ability than normal human IgG (P<0.05) by using both flow cytometric and immunofluorescence assays. Our findings suggest that the monoclonal protein produced by MM patients has a very low Fc γRIIb-binding ability and is incapable of signaling through the inhibitory ITIM pathway. Germline loss of Fc γRIIb in MM patients with variation in its expression level and its downstream signaling molecule SHIP and its phosphorylation as well as the inability of MM IgG to bind cells containing this receptor is a potential new mechanism that contributes to the uncontrolled growth of MM. Disclosures: Berenson: Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding, Speakers Bureau; Onyx Pharmaceuticals: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Medtronic: Consultancy, Honoraria, Research Funding, Speakers Bureau; Merck: Research Funding; Genentech: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document