scholarly journals FLT3 Inhibitors Induce Instability of p53 By Mir-181 Mediated Downregulation of Deubiquitinase YOD1 in Acute Myeloid Leukemia

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-7
Author(s):  
Han Zhong Pei ◽  
Yao Guo ◽  
Bo Lu ◽  
Zhiguang Chang ◽  
Dengyang Zhang ◽  
...  

Acute myeloid leukemia (AML) is a hematological malignancy featured by impaired differentiation and uncontrolled proliferation of myeloid blasts. FLT3 internal tandem duplication (ITD) presents in 30-40% patients with AML, which serves as an independent poor prognostic marker and an attractive therapeutic target. Up to date, several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been approved by FDA in the treatment of AML. However, FLT3 TKIs as single agents have limited effects to eliminate AML cells due to multiple drug-resistant mechanisms, including secondary FLT3 mutations, alternatively activated cell survival pathways, upregulation of FLT3 ligand, and downregulation of tumor suppressor genes. In the present study, we found that FLT3 TKIs decreased tumor suppressor p53 protein level by downregulation of YOD1 through miR-181 in FLT3-ITD mutant AML cells. In our previous studies, we generated FLT3-ITD transformed HCD-57 cells. HCD-57 cells are erythroleukemia cells that depend on erythropoietin for survival. When infected with recombinant retroviruses carrying FLT3-ITD, they acquired ability to proliferate in the absence of EPO. By using transcriptome analysis with RNAseq, we identified multiple differentially expressed miRNAs in HCD-57 transformed by FLT3-ITD, compared with parental HCD-57 cells. miR-181a-5p and miR-181b-5p were among these highly differentially expressed miRNAs. These two miRNAs were predicted to bind in 3'UTR of deubiquitinase YOD1 by using TargetScanHuman 7.2, an online tool to predict biological targets of miRNAs. Previous studies have shown that the ubiquitination and protein level of p53 is dysregulated due to overexpressed E3 ligase MDM2/4 in AML cells, but few studies focused on deubiquitinase of p53. We found that deubiquitinase YOD1 interacted with p53 by immunoprecipitation. Overexpression of YOD1 prevented degradation of p53 led by cycloheximide, a protein synthesis inhibitor. We further found that overexpression of YOD1 resulted in decreased ubiquitination of p53, indicating that YOD1 stabilized p53 protein through deubiquitination. Subsequently, we detected the expression of miR-181, YOD1 and p53 in a FLT3-ITD positive AML cell line MV-4-11 treated by FLT3 TKIs sorafenib, sunitinib and quizartinib. Real-time quantitative PCR showed that the treatment of FLT3 TKIs upregulated the expression of miR-181a-5p/miR-181b-5p, and downregulated mRNA level of their predicted target YOD1. The mRNA level of p53 remained unchanged but its protein level decreased with enhanced ubiquitination in MV-4-11 cells treated by FLT3 TKIs in the ubiquitination assay. These data suggested that FLT3 TKIs could reduce the stability of p53 by regulating miRNA-targeted YOD1. In addition, we collected peripheral blood mononuclear cells (PBMCs) from patients with AML and age-matched healthy donors. We found increased expression of miR-181a-5p and miR-181b-5p and decreased expression of YOD1 in PBMCs from AML patients compared with healthy donors, suggesting a pathological role of miR-181 to regulate YOD1/53 pathway in AML. In conclusion, our data showed that FLT3 TKIs induced instability of p53 by miR-181 mediated downregulation of YOD1. YOD1 as a novel deubiquitinase of p53 could play important roles in drug-resistance and progression of AML. Disclosures No relevant conflicts of interest to declare.

2011 ◽  
Vol 58 (5) ◽  
pp. 715-721 ◽  
Author(s):  
Astrid A. Danen-van Oorschot ◽  
Jenny E. Kuipers ◽  
Susan Arentsen-Peters ◽  
Diana Schotte ◽  
Valerie de Haas ◽  
...  

2017 ◽  
Vol 53 ◽  
pp. S52
Author(s):  
Jan-Henning Klusmann ◽  
Razan Jammal ◽  
Kathrin Krowiorz ◽  
Nadine Haetscher ◽  
Raj Bhayadia ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunqi Zhu ◽  
Xiangmin Tong ◽  
Ying Wang ◽  
Xiaoya Lu

AbstractAcute myeloid leukemia (AML) is an aggressive and heterogeneous clonal hematologic malignancy for which novel therapeutic targets and strategies are required. Emerging evidence suggests that WTIP is a candidate tumor suppressor. However, the molecular mechanisms of WTIP in leukemogenesis have not been explored. Here, we report that WTIP expression is significantly reduced both in AML cell lines and clinical specimens compared with normal controls, and low levels of WTIP correlate with decreased overall survival in AML patients. Overexpression of WTIP inhibits cell proliferation and induces apoptosis both in vitro and in vivo. Mechanistic studies reveal that the apoptotic function of WTIP is mediated by upregulation and nuclear translocation of FOXO3a, a member of Forkhead box O (FOXO) transcription factors involved in tumor suppression. We further demonstrate that WTIP interacts with FOXO3a and transcriptionally activates FOXO3a. Upon transcriptional activation of FOXO3a, its downstream target PUMA is increased, leading to activation of the intrinsic apoptotic pathway. Collectively, our results suggest that WTIP is a tumor suppressor and a potential target for therapeutic intervention in AML.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1517-1524 ◽  
Author(s):  
Marjan J. T. Veuger ◽  
M. Willy Honders ◽  
Jim E. Landegent ◽  
Roel Willemze ◽  
Renée M. Y. Barge

Deficiency of functional deoxycytidine kinase (dCK) is a common characteristic for in vitro resistance to cytarabine (AraC). To investigate whether dCK is also a target for induction of AraC resistance in patients with acute myeloid leukemia (AML), we determined dCK messenger RNA (mRNA) expression in (purified) leukemic blasts and phytohemagglutinin-stimulated T cells (PHA T cells) from patients with chemotherapy-sensitive and chemotherapy-resistant AML. In control samples from healthy donors (PHA T cells and bone marrow), only wild-type dCK complementary DNA (cDNA) was amplified. Also, in (purified) leukemic blasts from patients with sensitive AML, only wild-type dCK cDNAs were observed. These cDNAs coded for active dCK proteins in vitro. However, in 7 of 12 (purified) leukemic blast samples from patients with resistant AML, additional polymerase chain reaction fragments with a deletion of exon 5, exons 3 to 4, exons 3 to 6, or exons 2 to 6 were detected in coexpression with wild-type dCK. Deletion of exons 3 to 6 was also identified in 6 of 12 PHA T cells generated from the patients with resistant AML. The deleted dCK mRNAs were formed by alternative splicing and did code for inactive dCK proteins in vitro. These findings suggest that the presence of inactive, alternatively spliced dCK mRNA transcripts in resistant AML blasts may contribute to the process of AraC resistance in patients with AML.


2020 ◽  
Vol 29 (3) ◽  
pp. 387-397
Author(s):  
Yangli Zhao ◽  
Tingjuan Zhang ◽  
Yangjing Zhao ◽  
Jingdong Zhou

BACKGROUND: The runt-related transcription factor family (RUNXs) including RUNX1, RUNX2, and RUNX3 are key transcriptional regulators in normal hematopoiesis. RUNXs dysregulations caused by aberrant expression or mutation are frequently seen in various human cancers especially in acute myeloid leukemia (AML). OBJECTIVE: We systemically analyzed the expression of RUNXs and their relationship with clinic-pathological features and prognosis in AML patients. METHODS: Expression of RUNXs was analyzed between AML patients and normal controls from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Correlations between RUNXs expression and clinical features together with survival were further analyzed. RESULTS: All RUNXs expression in AML patients was significantly increased as compared with controls. RUNXs expression was found to be significantly associated with genetic abnormalities such as RUNX1 mutation, t(8;21) and inv(16)/t(16;16). By Kaplan-Meier analysis, only RUNX3 overexpression was associated with shorter overall survival (OS) and disease-free survival (DFS) among non-M3 AML patients. Notably, in high RUNX3 expression groups, patients received hematopoietic stem cell transplantation (HSCT) had markedly better OS and DFS than patients without HSCT among both all AML and non-M3 AML. In low RUNX3 expression groups, there were no significant differences in OS and DFS between HSCT and non-HSCT groups among both all AML and non-M3 AML. In addition, a total of 835 differentially expressed genes and 69 differentially expressed microRNAs were identified to be correlated with RUNX3 expression in AML. CONCLUSION: RUNXs overexpression was a frequent event in AML, and was closely associated with diverse genetic alterations. Moreover, RUNX3 expression may be associated with clinical outcome, and helpful for guiding treatment choice between HSCT and chemotherapy in AML.


Sign in / Sign up

Export Citation Format

Share Document