scholarly journals Age-Acquired Downregulation of Lmna Leads to Epigenetic Deregulation and Altered HSPC Function

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3280-3280
Author(s):  
Hsuan-Ting Huang ◽  
Dean Wade ◽  
Daniel Bilbao ◽  
Gabriel S Gaidosh ◽  
Ramin Shiekhattar ◽  
...  

Abstract Hematopoietic stem cells (HSCs) exhibit epigenetic reprogramming and decline in function with aging, and these changes may be predisposing mechanisms for development of clonal hematopoiesis and myeloid malignancies. Our recent study characterizing the epigenetic and transcriptional landscape of young (18-30 years) and aged (65-75 years) human CD34 +CD38 - bone marrow (BM) cells identified Lamin-A/C (LMNA) as one of the most downregulated genes with aging (7.9-fold, p=1.9x10 -13). LMNA encodes the nuclear lamina protein Lamin-A/C and is mutated in the premature aging disorder Hutchinson-Gilford Progeria Syndrome. To determine whether downregulation of LMNA contributes to the phenotype of human HSC aging, we knocked down LMNA (LMNA KD) using shRNA in young, mobilized peripheral blood CD34 + cells. With an average knockdown of 60%, we observed ~33% increase in myeloid colony forming potential (p<0.05). LMNA KD also impaired differentiation in liquid culture as determined by persistence of CD34 expression in twice as many cells as controls (p<0.0001) while induction of myeloid CD11b expression was reduced by ~29% (p<0.05), as well as a trend to reduced erythroid (CD71 +GYPA +) differentiation. To investigate the effects of Lmna loss-of-function in vivo, we conditionally deleted Lmna in mice using Vav-Cre. Loss of Lmna (Lmna KO) had no effect on steady state hematopoiesis in young (10 weeks) or middle-aged (14 months) knockout mice. However, Lmna KO BM cells from middle-aged mice generated 2-fold more total colonies than wild-type, floxed controls (WT=126 vs KO=292, p<0.01). Given that nuclear architecture provides a layer of epigenetic regulation through chromatin-lamina interactions, we investigated how the epigenome changes in the context of LMNA deficiency. By super-resolution microscopy, we observed loss of LMNA localization from the nuclear periphery in LMNA KD human CD34 +cells (p<0.05). Since lamina-associated domains generally contain regions of repressed chromatin, we stained for histone H3K9me2 and observed that LMNA KD cells displayed increased scattering throughout the nucleus without a change in its density. Next, we performed ATAC-seq and identified 603 open chromatin sites showing changes in accessibility (FDR<0.1). Over 73% of these sites show reduced accessibility and were associated with genes showing reduced expression by RNA-seq. Gene ontology analysis of these sites identified genes associated with heme biosynthetic and cell differentiation processes (FDR<0.005). Moreover, gene set enrichment analysis of the RNA-seq confirmed that downregulated genes were enriched for genes downregulated in our previously reported CD34 + aging signature (NES=-1.46, FDR=0.001). To determine whether LMNA KD alters the epigenome, we performed ChIP-seq for active (H3K4me3, H3K27ac) and repressive (H3K9me2) histone marks. LMNA KD resulted in significant reduction of 36% of H3K27ac peaks, which mimics our previous observation of marked age-related losses of H3K27ac. Most differential peaks localized to gene promoters (50%) and introns (34%) and include genes involved in nuclear pore organization and gene silencing (FDR<0.001). Notably, for peaks located at intergenic regions, >35% overlapped with active enhancers we reported as lost with aging and were associated with genes involved in regulation of p38 MAPK cascade (enrichment=2.34E -5), an important signaling pathway regulating proliferation and differentiation of HSCs and leukemic cells. Taken together, LMNA deficiency recapitulates features of aging at the functional and epigenetic level. LMNA KD in young, human CD34 + cells impaired their differentiation while increasing their colony forming potential. Similarly in middle-aged mice, LMNA KO BM cells showed increased colony forming potential. Genomic changes induced by LMNA deficiency include reduced accessibility and gene transcription, accompanied by changes in localization and occupancy of histone H3K9me2 and H3K27ac, respectively. These epigenetic changes affect genes regulating differentiation and signaling pathways. Thus, we have demonstrated that in addition to its structural role, LMNA also contributes to chromatin regulation of hematopoietic pathways important for normal CD34 + function. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 246-246
Author(s):  
Eva M Fast ◽  
Ellen M Durand ◽  
Audrey Sporrij ◽  
Leslie Ojeaburu ◽  
Rebecca Maher ◽  
...  

Abstract Hematopoietic stem cells (HSCs) offer promising treatment options for many blood diseases. We have previously identified Prostaglandin E2 (PGE2), a small molecule that increased HSC numbers in the zebrafish embryo. In an adult mammalian transplantation setting a two hour treatment significantly enhanced HSC engraftment. Currently PGE2 is being tested in a phase 2 clinical trial to improve cord blood transplants. To better understand PGE2 effect on HSCs mouse multipotent progenitors (MPP), short term (ST) HSCs, and long term (LT) HSCs were isolated via FACS and given a two hour pulse of PGE2 followed by a competitive transplantation assay. Surprisingly, PGE2 treatment mainly affected ST-HSCs by dramatically prolonging their ability to contribute to peripheral blood. The effect of the two hour treatment persisted through secondary competitive transplants in which robust peripheral blood chimerism of ST-HSCs was evident even 1.5 years after having been exposed to the drug. To elucidate underlying molecular changes gene expression right after PGE2 treatment as well as in ST-HSCs after transplantation was assessed. PGE2 target genes were divided into two categories; "transiently induced" and "permanently induced" genes. Most of the transcripts upregulated two hour after PGE2 treatment were "transiently induced" meaning that they did not continue to be differentially expressed after transplantation. In contrast, a few transcripts including chemokines such as Cxcl2, Cxcl3, members of the Fos gene family as well as Nr4a1, 2 and 3 were both upregulated right after PGE2 treatment as well as in ST-HSCs after transplantation. We classified these genes as "permanently induced". ATAC (Assay for Transposase-Accessible Chromatin)-seq analysis of the transplanted PGE2 treated cells indicated that these "permanently induced" genes maintained a distinctly open chromatin profile in both promotor and enhancer regions, whereas the "transiently induced" genes did not. Gene expression in human CD34+ cells included a signature implying CREB as the main transcription factor responsible for the acute PGE2 response. Phospho-FACS in mouse ST-HSCs and Western-blot analysis in human CD34+ cells confirmed a significant increase in CREB phosphorylation after PGE2 stimulation. Chromatin immunoprecipitation (ChIP)-seq analysis of pCREB was able to identify specific genomic regions where pCREB is recruited to after PGE2 treatment. Compared to unstimulated CD34+ cells an increased binding of pCREB could be detected in promotor regions near transcription start sites. In addition over 90% of de-novo pCREB binding occurred in intergenic and intronic regions. To determine the activation state of these putative enhancers changes in the histone mark H3K27ac and open chromatin state (via ATAC-seq) were assessed after PGE2 treatment. The data suggest that PGE2-induced pCREB binding correlates with remodeling of chromatin already after two hours of drug treatment. Furthermore chromatin sites opened by PGE2 were significantly enriched for the CREB motif both in human CD34+ cells acutely after treatment as well as in mouse ST-HSCs 1.5 years after transplant. In summary this work shows that a two hour treatment with PGE2 is sufficient to confer long-term engraftment properties to ST-HSCs. PGE triggers a chromatin remodeling event through CREB that can permanently alter epigenetic state and gene expression of ST-HSCs. Understanding the self-renewal network induced by PGE2 will not only enrich current clinical applications targeted at increasing engraftable HSC numbers but also further basic understanding of HSC self-renewal. Disclosures Zon: FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1585-1593 ◽  
Author(s):  
Anna Jetmore ◽  
P. Artur Plett ◽  
Xia Tong ◽  
Frances M. Wolber ◽  
Robert Breese ◽  
...  

Differences in engraftment potential of hematopoietic stem cells (HSCs) in distinct phases of cell cycle may result from the inability of cycling cells to home to the bone marrow (BM) and may be influenced by the rate of entry of BM-homed HSCs into cell cycle. Alternatively, preferential apoptosis of cycling cells may contribute to their low engraftment potential. This study examined homing, cell cycle progression, and survival of human hematopoietic cells transplanted into nonobese diabetic severe combined immunodeficient (NOD/SCID) recipients. At 40 hours after transplantation (AT), only 1% of CD34+ cells, or their G0(G0CD34+) or G1(G1CD34+) subfractions, was detected in the BM of recipient mice, suggesting that homing of engrafting cells to the BM was not specific. BM of NOD/SCID mice receiving grafts containing approximately 50% CD34+ cells harbored similar numbers of CD34+ and CD34− cells, indicating that CD34+ cells did not preferentially traffic to the BM. Although more than 64% of human hematopoietic cells cycled in culture at 40 hours, more than 92% of cells recovered from NOD/SCID marrow were quiescent. Interestingly, more apoptotic human cells were detected at 40 hours AT in the BM of mice that received xenografts of expanded cells in S/G2+M than in recipients of G0/G1 cells (34.6% ± 5.9% and 17.1% ± 6.3%, respectively; P < .01). These results suggest that active proliferation inhibition in the BM of irradiated recipients maintains mitotic quiescence of transplanted HSCs early AT and may trigger apoptosis of cycling cells. These data also illustrate that trafficking of transplanted cells to the BM is not selective, but lodgment of BM-homed cells may be specific.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Susmita Sahoo ◽  
Sol Misener ◽  
Tina Thorne ◽  
Meredith Millay ◽  
Kathryn M Schultz ◽  
...  

Local transplantation of human CD34+ hematopoietic stem cells has been shown to promote neovascularization in pre-clinical studies in models of myocardial and limb ischemia. In early phase clinical trials, transplantation of CD34+ cells has been associated with reduced angina, improved exercise time and reduced amputation rates. Several studies have suggested that paracrine effects by these pro-angiogenic cells mediate the effects induced by cell transplantation. We hypothesized that CD34+ cells secrete exosomes (Exo), which mediate at least a part of the therapeutic function of the cells. Methods and Results: We isolated Exo from the conditioned media of adult human peripheral blood (PB) CD34+ cells. The angiogenic and therapeutic potency of CD34+ Exo was compared with the intact CD34+ cells and also with PB mononuclear cell (MNC) Exo. Exo from both CD34+ cells and MNC are 50–90nm in size, have cup shaped morphology, and carry known Exo-marker proteins such as CD63, TSG101 and Annexin V as shown by electron microscopy, Western blot and flow cytometry. Compared to CD34+ cells or MNC Exo, CD34+ Exo significantly induces in vitro angiogenic activities such as viability, proliferation and tube formation of HUVECs on matrigel- in a dose dependent manner. In vivo, CD34+ Exo stimulated significant neovascularization in mouse corneal angiogenesis assay (14±4 mm v MNC Exo, 4±1 mm, p<0.01) and incorporation of endothelial (CD31+) cells in mouse matrigel-plug assay (6±1.7% v CD34+ cells, 2±0.8%, p<0.01). Finally, in a mouse model of hind limb ischemia (HLI), CD34+ Exo significantly improved perfusion (ratio: 1.01±0.04 v 0.57±0.1, P<0.05), increased capillary density (1.8±0.3/HPF v 0.9±0.1/HPF, p<0.001) and prevented ischemic leg amputation (16% v 100%), as compared with MNC Exo. Conclusions: These data demonstrate that CD34+ Exo induce angiogenic activity and ischemic tissue repair in the absence of CD34+ cells, and suggest that Exo represent important mediators of the therapeutic effects associated with CD34+ cell therapy. We speculate that Exo derived from CD34+ cells may represent a significant component of the paracrine effect of progenitor-cell transplantation for therapeutic angiogenesis.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1243-1255 ◽  
Author(s):  
Mo A. Dao ◽  
Ami J. Shah ◽  
Gay M. Crooks ◽  
Jan A. Nolta

Abstract Retroviral-mediated transduction of human hematopoietic stem cells to provide a lifelong supply of corrected progeny remains the most daunting challenge to the success of human gene therapy. The paucity of assays to examine transduction of pluripotent human stem cells hampers progress toward this goal. By using the beige/nude/xid (bnx)/hu immune-deficient mouse xenograft system, we compared the transduction and engraftment of human CD34+progenitors with that of a more primitive and quiescent subpopulation, the CD34+CD38− cells. Comparable extents of human engraftment and lineage development were obtained from 5 × 105 CD34+ cells and 2,000 CD34+CD38− cells. Retroviral marking of long-lived progenitors from the CD34+ populations was readily accomplished, but CD34+CD38− cells capable of reconstituting bnx mice were resistant to transduction. Extending the duration of transduction from 3 to 7 days resulted in low levels of transduction of CD34+CD38− cells. Flt3 ligand was required during the 7-day ex vivo culture to maintain the ability of the cells to sustain long-term engraftment and hematopoiesis in the mice.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3756-3765 ◽  
Author(s):  
Ngaire J. Elwood ◽  
Helen Zogos ◽  
Daniel S. Pereira ◽  
John E. Dick ◽  
C. Glenn Begley

Abstract The product of the SCL gene is a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of hematopoietic stem cells in both the embryo and the adult. However, once the stem cell compartment is established, the function of SCL in subsequent differentiation and commitment events within normal hematopoietic cells remains undefined. The aim of the current study was to investigate this role using purified normal human hematopoietic CD34+ cells. An SCL retrovirus was used to transduce CD34+ cells isolated from human bone marrow, peripheral blood, and umbilical cord blood. Enforced expression of SCL increased by a median of twofold the number of erythroid colonies, with an increase in both colony size and the rate of hemoglobinization. Unexpectedly, enforced expression in CD34+ cells also significantly increased the number of megakaryocyte colonies, but with no impact on the size of colonies. There was no consistent effect on the number nor size of granulocyte-macrophage (GM) colonies. The proliferative effect of enforced SCL expression on erythroid cells was attributed to a shortened cell cycle time; the self-renewal capacity of erythroid or GM progenitors was unchanged, as was survival of cells within colonies. These results demonstrate a role for SCL in determining erythroid and megakaryocyte differentiation from normal human hematopoietic CD34+ cells.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 952-958 ◽  
Author(s):  
Mario Peichev ◽  
Afzal J. Naiyer ◽  
Daniel Pereira ◽  
Zhenping Zhu ◽  
William J. Lane ◽  
...  

Emerging data suggest that a subset of circulating human CD34+ cells have phenotypic features of endothelial cells. Whether these cells are sloughed mature endothelial cells or functional circulating endothelial precursors (CEPs) is not known. Using monoclonal antibodies (MoAbs) to the extracellular domain of the human vascular endothelial receptor-2 (VEGFR-2), we have shown that 1.2 ± 0.3% of CD34+ cells isolated from fetal liver (FL), 2 ± 0.5% from mobilized peripheral blood, and 1.4 ± 0.5% from cord blood were VEGFR-2+. In addition, most CD34+VEGFR-2+ cells express hematopoietic stem cell marker AC133. Because mature endothelial cells do not express AC133, coexpression of VEGFR-2 and AC133 on CD34+ cells phenotypically identifies a unique population of CEPs. CD34+VEGFR-2+ cells express endothelial-specific markers, including VE-cadherin and E-selectin. Also, virtually all CD34+VEGFR-2+ cells express the chemokine receptor CXCR4 and migrate in response to stromal-derived factor (SDF)-1 or VEGF. To quantitate the plating efficiency of CD34+ cells that give rise to endothelial colonies, CD34+ cells derived from FL were incubated with VEGF and fibroblast growth factor (FGF)-2. Subsequent isolation and plating of nonadherent FL-derived VEGFR-2+ cells with VEGF and FGF-2 resulted in differentiation of AC133+VEGFR-2+ cells into adherent AC133−VEGFR-2+Ac-LDL+(acetylated low-density lipoprotein) colonies (plating efficiency of 3%). In an in vivo human model, we have found that the neo-intima formed on the surface of left ventricular assist devices is colonized with AC133+VEGFR-2+ cells. These data suggest that circulating CD34+ cells expressing VEGFR-2 and AC133 constitute a phenotypically and functionally distinct population of circulating endothelial cells that may play a role in neo-angiogenesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1343-1343
Author(s):  
Richard Hildreth ◽  
Robert W. Georgantas ◽  
Roshan Patel ◽  
Sebastien Morisot ◽  
Jonathan Alder ◽  
...  

Abstract In a large microRNA-array and bioinformatics study, we determined all of the microRNAs (miRs) expressed by human CD34+ hematopoietic stem-progenitor cells (HSPCs) from bone marrow and G-CSF mobilized blood. When we combined miR expression data, mRNA expression data fro a previous study (Georgantas et al, Cancer Research 64:4434), and data from various published mir-target prediction algorithms, we were able to bioinformaticly predict the actions of miRs within the hematopoietic system. MicroRNA hsa-mir-16 was highly expressed in CD34+ HSPCs, and was predicted to target several HSPC-expressed mRNAs (CXCR4, HoxB7, Runx-1, ETS-1, and Myb) that encode proteins known to be critically involved specifically in myelopoiesis within the hematopoietic system. We first confirmed that protein expression from each of these putative target mRNAs was in fact regulated by mir-16. The 3′UTR sequence from each of these mRNAs was cloned behind a luciferase reporter. Each reporter construct was transfected into K562 cells, which strongly express mir-16. In all cases, protein expression from the predicted target mRNA was greatly reduced in K562 cells, as compared to controls. As a first determination of mir-16’s function in hematopoietic cells, HL60 and K562 cells were transduced with hsa-mir-16 lentivirus, then treated with various chemical differentiation inducers. As was predicted by bioinformatics, hsa-mir-16 halted myeloid differentiation of HL60 cells, but did not affect megakaryocytic differentiation or erythroid differentiation of K562 cells. These initial findings suggest that mir-16 is a specific negative regulator of myelopoiesis. We are currently evaluating the effects of mir-16 on normal human CD34+ cells by in vitro CFC and suspension culture assays, as well as in vivo by transplantation of hsa-mir-16 lentivirus transduced cells in immunodeficient mice.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3859-3859
Author(s):  
Li ang Li ◽  
Tinisha McDonald ◽  
Hardik Modi ◽  
Arjun Sehgal ◽  
Ravi Bhatia

Abstract SHP-2 (ptpn11), a Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase, is expressed at high levels in hematopoietic cells and regulates downstream signaling from growth factor (GF) receptors. SHP-2 has been shown to play an important role in murine hematopoiesis. Moreover, several SHP-2 activating mutations have been identified in myeloid malignancies and there is interest in the development of SHP-2 inhibitors for cancer treatment. On the other hand previous report suggested that SHP-2 inhibition was associated with enhanced GF responsiveness in human hematopoietic cell lines. However the role of SHP-2 signaling in normal human hematopoietic stem and progenitor cell growth has not been studied. Here we investigated the function of SHP-2 in normal human hematopoiesis by inhibiting SHP-2 expression in cord blood (CB) CD34+ cells with stable SHP-2 shRNA expression. We transduced CB CD34+ cells with lentivirus vectors coexpressing SHP-2 specific shRNAs (Si-1 or Si-2) or a control shRNA (Ctrl) and RFP and selected RFP expressing CD34+ cells by flow cytometry sorting. We observed >80% inhibition of SHP-2 expression by Western blotting in Si-1 or Si-2 shRNA transduced cells compared with Ctrl shRNA transduced cells. We observed that culture with increasing concentrations of GF was associated with markedly reduced GF-induced stimulation of proliferation of SHP-2-knockdown CD34+ cells compared to controls. In addition we observed significantly increased apoptosis of SHP-2-knockdown CD34+ cells cultured under low and high GF conditions compared to controls, but little increase in apoptosis in GF-deprived cells, indicating markedly reduced response of SHP-2-knockdown cells to GF-mediated promotion of cell survival. SHP-2-knockdown CD34+ cells also demonstrated significantly reduced expansion in cell numbers following culture in high GF conditions compared with controls (115.3, 25.5 and 10.4 fold expansion for Ctrl, Si-1 and Si-2 at day 7). Analysis of the nature of cells generated in GF culture showed significantly reduced generation of both myeloid (CD33+, CD11b+ and CD14+) and erythroid cells from SHP-2-knockdown CD34+ cells compared with controls, with relatively greater inhibition of myeloid compared with erythroid differentiation. On the other hand CD34+ cell numbers were retained at levels similar to controls after culture. We also observed significantly reduced cell expansion and differentiation and higher apoptotic rates of SHP-2-knockdown cells cultured under either myeloid promoting (IL-3+SCF+G-CSF+GM-CSF) or erythroid promoting (SCF+EPO) GF conditions. SHP-2-knockdown cells demonstrated reduced activation of MAPK and STAT5 but not Akt on Western blotting that was associated with reduced MCL-1 expression, consistent with their reduced GF mediated proliferation and survival. Expression of the transcription factors SCL1, GATA-1, NF-E2 and FOG-1 was increased in SHP-2 knockdown CD34+ cells compared to controls, consistent with the relatively higher retention of CD34+ and erythroid cells compared with myeloid cells after culture. In conclusion, we show that SHP-2 knockdown in human CD34+ cells results in markedly decreased responsiveness to GF stimulation with significantly increased apoptosis, markedly diminished proliferation and reduced generation of differentiated cells during GF culture. A relative retention of the CD34+ cell population was seen despite increased apoptosis, which may be the result of reduced cell turnover and altered transcription factor expression in SHP-2-knockdown cells, and is in contrast to reduced stem cell self-renewal observed following SHP-2 knockdown in murine models. These results indicate a critical role for SHP-2 in GF mediated signaling responses in human hematopoietic stem/progenitor cells. These studies also caution that therapeutic SHP-2 inhibition could be associated with significant hematopoietic toxicity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5393-5393
Author(s):  
Tamara Riedt ◽  
Claudia Lengerke ◽  
Lothar Kanz ◽  
Viktor Janzen

Abstract The regulation of cell cycle activity, differentiation and self-renewal of stem cells are dependent on accurate processing of intrinsic and extrinsic signals. Traditionally, signaling pathway activation has been detected by immunobloting using phospho-specific antibodies. However, detection of signal transduction in rare cells within heterogeneous populations, such as hematopoietic stem and progenitor cells (HSC) has been difficult to achieve. In a recently reported approach to visualize signaling in selected single c-Kit+ Sca-1+ Lin− (KSL) bone marrow cells, cells were sorted onto glas slides by flow cytometry and signaling was detected by confocal fluorescence microscopy, a very time consuming method that thus restricts the number of cells that can be analysed simultaneously. Moreover it permits only qualitative, but not quantitative signaling evaluation (Yamazaki et al., EMBO J. 2006). Here, we report a new protocol allowing quantitative measurement of signaling activity in large numbers of defined murine and human hematopoietic cells. The cells are stained with established surface markers and then phospho-specific antibodies are used to detect the levels of active intracellular signaling molecules. Signals are quantified by flow cytometry fluorescence measurement. Importantly, the protocol developed in our laboratory enables preservation of surface marker staining identifying the cells of interest inspite the fixation and permeabilization procedures necessary for intracellular signaling detection. This applies also for antigens previously reported to be particularly vulnerable to standard fixation and permeabilization approaches (e.g. the murine stem cell markers c-Kit and Sca1). Thus, our protocol provides an easy and reliable method for quantifying the activation degree of several intracellular signaling pathways on single cell level in defined hematopoietic (stem) cells within the heterogeous bone marrow (BM) compartment. Using cytokines known to exert a biological effect on HSCs, we have examined the susceptibility of KSL murine BM cells and human BM CD34+ cells to cytokine-induced signaling. We have performed extensive dosage titration and time course analysis for multiple cytokines (SCF, TPO, Flt-3, IL-3, IL-6, Ang-1, SDF-1α, TGF-β, and BMP-4) and signaling pathways (ERK, Akt, p38MAPK, Jak-Stat, TGF-β/BMP-Smad) in murine KSL BM cells. The activation intensity and the duration of signal activity as measured by the expression of corresponding phosphorylated proteins were cytokine specific. The obtained results can be used as a platform to explore signaling alterations in distinct compartments of the hematopoietic system, and may provide mechanistical insights for observed bone marrow defects (e.g impaired ERK signaling pathway has been detected as a possible cause of hematopoietic defects in Caspase-3 mutant murine HSCs, Janzen et al, Cell Stem Cell 2008). Furthermore, we could show that the technique is also applicable to human BM cells and that the human hematopoietic stem cell marker CD34 is also preserved by our fixation and permeabilization protocol. Preliminary results suggest that cytokines induce similar signaling activation in human CD34+BM cells collected from healthy donors. As observed in mouse KSL BM cells, stimulation of human CD34+cells with human stem cell factor (hSCF) induced activation of the ERK but not the Akt pathway. Ongoing experiments analyse the stimulatory effects of other cytokines such as thrombopoietin (TPO) and fms-related tyrosine kinase 3 (Flt-3) and their corresponding pathways. Moreover, comparative studies are underway analyzing cross-reactivity between mouse and human cytokines, aiming to provide insights into cytokine-induced biases in commonly used xenotransplantation models.


Sign in / Sign up

Export Citation Format

Share Document