scholarly journals Single-Cell Analysis By Mass Cytometry Reveals CD19 CAR T Cell Spatiotemporal Plasticity in Patients

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2794-2794
Author(s):  
Lior Goldberg ◽  
Eric R Haas ◽  
Vibhuti Vyas ◽  
Ryan Urak ◽  
Stephen J Forman ◽  
...  

Abstract T cell adaptive immune response requires cellular plasticity to generate distinct subsets with diverse functional and migratory capacities. By expressing unique patterns of trafficking molecules, T cells interact with tissue-specific vascular endothelia for preferential recruitment to distinct tissues. Chimeric antigen receptors (CARs) are synthetically engineered receptors that redirect the specificity, effector function, and metabolism of transduced T cells. Studies of CAR T cells have primarily focused on a limited number of phenotypic markers in blood, representing an incomplete view of CAR T cell complexity. To address this need, we used cytometry by time of flight (CyTOF) which enables high dimensional, in-depth, proteomic analysis of immune cells at the single-cell level. We designed an integrative panel with antibodies specific for CAR, cell lineage, activation, maturation, trafficking, and exhaustion markers (Figure 1A), and investigated the spatiotemporal landscape of CD19 CAR T cells across patients' tissues. To interrogate the spatiotemporal dynamics of CAR T cells in vivo we analyzed clinical samples from three patients treated with CD19 CAR T cells for B cell hematological malignancies. For each patient we sampled the leukapheresis T cells, CAR product, PMBCs on days 7 and 28, BM on day 28 and cerebrospinal fluid on day 7 or 28 post CAR T cell infusion (Figure 1B). Patients CAR product revealed upregulation in most of the trafficking and activation molecules compared to leukapheresis T cells as baseline. Remarkably, the human tissue samples showed diverse spatiotemporal landscapes. For example, CSF samples were enriched in activation markers such as CD25, CD27, CD95, granzyme B; trafficking proteins such as integrin β7, CD11a, CD49d, CD62L, CD69, CCR7, CXCR3, CXCR4 and had diminished exhaustion marker PD-1 (Figure 1C). To further explore the spatiotemporal dynamics, we employed FlowSOM which identified 21 distinct clusters (Figure 1D). Quantitation of clusters frequency and protein expression revealed significant heterogeneity, individual clusters showed different patterns of expansion and contraction by time and place (Figure 1E). For example, leukapheresis T cells were solely enriched in clusters 1-2 marked by CD45RA CD27, and CCR7 expression, while CAR product was enriched in clusters 9,11, and 13 marked by CXCR3, integrin β7 trafficking molecules and granzyme B expression. Furthermore, day 7 peripheral blood samples were solely enriched in clusters 19-20 marked by the expression of the activation markers HLA-DR, CD25, and granzyme B, in addition to the trafficking proteins CD49d, CD62L and CXCR3. Notably, cluster 12 which had low abundance in the leukapheresis T cells and was depleted in the CAR product, dominated day 7 peripheral blood samples, and persisted to a lesser degree in all tissue samples. Moreover, clusters 3 and 4 that were enriched in the CSF expressed high CXCR3, CXCR4, CCR7, integrin β7, CD62L, and CD49b which may attribute to their migration between blood and CSF. Since CAR T cells are genetically modified T cells with distinct properties, we next asked to evaluate the phenotypic similarities between patients' tissue CAR T cells and T cell subsets in healthy donor PBMCs. Spearman correlation analysis demonstrated strong positive correlation between leukapheresed T cells and Naïve/stem cell memory phenotypes. Whereas, peripheral blood samples correlated the most with effector and effector memory phenotype, notably on day 28 post infusion. Interestingly, CSF samples possessed features of central/stem cell memory phenotype, mirroring our preclinical findings where CAR T cells exposed into CSF are memory-like T cells. (Wang, et al, Cancer Immunol Res, 2021), and BM CAR T cells, correlated with both effector and memory phenotypes, highlighting the role of the BM as a T cell memory niche. In summary, mass cytometry enabled us for the first time, to our knowledge, to provide insights into the spatiotemporal plasticity of CAR T cell therapy. We revealed remarkable diversification within patients CAR T cells and their spatiotemporal relationship to T cells specialization within the human immune system and identified tissue specific CAR T cell expression profiles. Our work provides a potential framework to remodel CAR T cells for enhanced immunotherapy efficacy. Figure 1 Figure 1. Disclosures Forman: Lixte Biotechnology: Consultancy, Current holder of individual stocks in a privately-held company; Mustang Bio: Consultancy, Current holder of individual stocks in a privately-held company; Allogene: Consultancy. Wang: Pepromene Bio, Inc.: Consultancy.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4646-4646
Author(s):  
Emmanouil Simantirakis ◽  
Vassilis Atsaves ◽  
Ioannis Tsironis ◽  
Margarita Gkyzi ◽  
Kostas Konstantopoulos ◽  
...  

Introduction A novel approach that can cover the therapeutic gap in NHL treatment are the autologous T cells, expressing Chimeric Antigen Receptors (CAR-T cells) against tumor markers. Such clinical-grade products based on Lenti (LV) or Retro- vectors have hit the market. An alternative vector system for CAR gene transfer in T-cells are Foamy Viruses (FV). To evaluate the potential of FV vectors in CAR-T cell development, we synthesized an antiCD19 scFv cDNA and cloned it in both an FV and an LV backbone; both vectors were tested in paired experiments Material and Methods The anti-CD19 CAR was under the control of the EF1a promoter; EGFP expression was under the control of an IRES2 element. The anti-CD19 CAR sequence was deduced from published data. FV vectors were made with a 4-plasmid vector system in 293T cells. 2nd generation LV vectors were purchased from Addgene. Cord blood (CB), healthy donor peripheral blood (PB) and CLL patients' PB was used as a source for CD3+ cells using immunomagnetic enrichment. Informed consent has been obtained in all cases of human sample use. T cells were activated by antiCD3/CD28 beads and transduced with antiCD19 LV or FV vectors. Transduction efficiency was assayed by flow cytometry (FCM) using a PE-conjugated anti-mouse Fab antibody. FV and LV CAR-T cells were expanded with Rapid Expansion Protocol (REP) and their cytotoxicity assays was evaluated against the CD19+ cell lines Raji and Daudi. The CLL patient derived CAR-Ts were evaluated against autologous B cells. Cytotoxicity was evaluated with an FCM protocol using CFSE-stained target cells vs unstained effector CARTs in different ratios. At the end of the incubation cells were stained with 7AAD to discriminate against live/dead cells. CAR-T cell activation was also assayed by INF-γ ELISA, following cocultures with target cells at a ratio of 1:1 for 24h. Results Vector titers: LV vector titers were between 3-5x10^5 TU/ml for both LV vectors (with or without EGFP cassette). FV vector titers were between 2-4x10^5 TU/ml regardless of the presence of the EGFP cassette. Tx efficiency: FV can mediate efficient gene transfer on T cells in the presence of heparin at an effective dose of 20-40 U/ml using a spinoculation technique. Transduction efficiency ranged from 40-65% at MOI=3-5, and was comparable to the transduction efficiency of LV vectors at a much higher MOI (10 to 30). Cytotoxicity data on lines: Following REP, the cell population consisted mostly (close to 96% purity) of CAR-T cells regardless of the vector used or of the T cell source. Effector cells were cocultured with the CD19+ cell lines, Daudi and Raji at varying ratios. With cord blood derived FV-CAR-T cells, at 4h post coculture we observed a 39.4% cell lysis at a ratio of 10:1 effector to target (n=1). Similar results were obtained for LV vectors. Peripheral blood derived CAR-T cells at THE same ratio (10:1), demonstrated 83.9% and 93.1% cell lysis for FV-CART and LV-CART cells respectively (n=2). Cytotoxicity data on CLL cells: T-cells from peripheral blood of CLL patients were used to generate LV- and FV-CAR-T cells. At the ratio of 10:1, we observed 73.1% and 69,8% cytotoxicity for FV-CAR-Ts and 70.1% and 70.7% with LV-CAR-Ts, in 2 independent paired experiments. IFN as activation marker: In two paired activation experiments, CB-derived FV-CAR-T cells secrete 560 and 437pg/ml of IFN-γ; similarly, LV-CAR-Ts secrete 534 and 554pg/ml IFN-γ. Untransduced control cells, produced 68pg/ml and 12pg/ml for FV-CAR-T and LV-CAR-T experimental arm respectively. Conclusion In the current work, we developed and tested FV vectors for anti- CD19 CAR-T cell production. We proved that FV viral vectors are capable of mediating efficient gene transfer to human T cells. We developed a method to efficiently transfer FV vectors into T-cells, using a clinically relevant protocol with heparin. The FV-derived CAR T cells demonstrate the same cytotoxic properties in vitro as their LV-derived counterpart and the same activation levels in the presence of CD19 expressing target cells as measured by IFN-γ secretion. FV CARTs derived from PB of CLL patients were capable of mediating comparable cytotoxicity levels as their LV-derived counterparts. Overall, we provide a proof of concept that FVs could be a safe and efficient alternative to LV derived vectors for CAR-T cells. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 8505-8505 ◽  
Author(s):  
Jesus G. Berdeja ◽  
Deepu Madduri ◽  
Saad Zafar Usmani ◽  
Indrajeet Singh ◽  
Enrique Zudaire ◽  
...  

8505 Background: JNJ-68284528 (JNJ-4528) is a chimeric antigen receptor T (CAR-T) cell therapy containing 2 BCMA-targeting single-domain antibodies. Here we present updated CARTITUDE-1 (NCT03548207) phase 1b results with longer follow-up. Methods: Pts had MM per IMWG criteria, measurable disease, received ≥3 prior regimens or were double refractory to a PI and IMiD, and received anti-CD38 antibody. Cyclophosphamide 300 mg/m2+ fludarabine 30 mg/m2 over 3 days were used for lymphodepletion. JNJ-4528 (median, 0.73x106 CAR+ viable T cells/kg) was given as a single infusion. Cytokine release syndrome (CRS) was graded by Lee et al2014 and neurotoxicity by CTCAE, v5.0 and ASTCT grading. Response was assessed per IMWG criteria. Results: As of 17 Jan 2020, median follow-up is 9 mo (3–17). Phase 1b enrollment is complete (N = 29 treated; median 5 (3–18) prior lines, 76% penta-exposed, 86% triple-refractory, 31% penta-refractory, 97% refractory to last line of therapy). Most frequent adverse events (AEs) were neutropenia (100%), CRS (93%), and thrombocytopenia (93%). Grade (Gr) ≥3 hematologic AEs were neutropenia (100%), thrombocytopenia (69%), and leukopenia (59%). 27 (93%) pts had CRS; 25 Gr 1–2, 1 Gr 3, and 1 Gr 5 (day 99 subsequent to dose-limiting toxicity of prolonged Gr 4 CRS). Median time to onset of CRS was 7 days (2–12). 4 pts had treatment-related neurotoxicity: 3 Gr 1–2 and 1 Gr 3. ORR was 100%, with 22 (76%) stringent complete responses (sCRs), 6 (21%) very good partial responses (VGPRs), and 1 (3%) PR. Median time to ≥CR was 2 mo (1–9). 26/29 pts are progression-free, with 6-mo progression-free survival rate of 93% and longest response ongoing at 15 mo. 1 death due to CRS and 1 to acute myeloid leukemia (not treatment-related) occurred during the study. All 16 pts (14 sCR, 2 VGPR) evaluable at 6 mo were minimal residual disease negative at 10−5 or 10−6. JNJ-4528 CAR+ T cell expansion peaked between day 10–14. At 6-mo individual follow-up, 22/28 pts had JNJ-4528 CAR+ T cells below the level of quantification (2 cells/µL) in peripheral blood, suggesting CAR-T persistence in peripheral blood did not seem to correlate with deepening of response. At peak expansion, preferential expansion of CD8+ CAR-T cells with a central memory phenotype was observed in peripheral blood. Conclusions: JNJ-4528 treatment led to responses in all pts. These responses were early, deep, and durable at a low dose of CAR-T cells with 26/29 (90%) pts progression free at median 9-mo follow-up. CRS was manageable in most pts, supporting outpatient dosing. Clinical trial information: NCT03548207 .


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1029-A1030
Author(s):  
Gail Petuna Risbridger ◽  
Laura Helen Porter ◽  
Joe Zhu ◽  
David Byrne ◽  
Natalie Lister ◽  
...  

Abstract Chimeric antigen receptor T (CAR T) cell therapy is an adoptive immunotherapy that has led to new treatments for lymphoma, leukemia, and other blood cancers; however, its efficacy for prostate cancer remains unproven. Here we report pre-clinical evidence of the efficacy of CAR T cell therapy against the Lewis Y antigen (LeY) using patient-derived models of prostate cancer. To assess the expression of LeY on prostate tumours, we performed immunohistochemistry on a cohort of 41 patient-derived xenografts (PDXs). Cytoplasmic and membrane expression were separately assessed and quantified, for each patient. Overall, 61% (25/41) of PDXs were positive for membrane LeY expression, of which 18 PDXs had greater than 50% membrane-positive cells, and considered most suitable to detection and stable binding by anti-LeY CAR T’s. To determine the in vitro sensitivity to CAR T cytotoxicity, we selected 4 PDXs with high and 2 PDXs with low LeY expression using 3 androgen receptor (AR)-positive adenocarcinomas and 3 AR-negative tumors expressing neuroendocrine markers. Next we established organoids for in vitro co-culture assays where organoids were co-incubated with an equal number of anti-LeY+ CAR T cells or Empty vector control CAR T cells (Ev CAR T). Using time-lapse microscopy we reported destruction of organoids by LeY+ CAR T cells as indicated by their morphological collapse and uptake of propidium iodide from the culture medium; control Ev CAR T cells produced no cytotoxicity. Over the 48h assay, the level of target cell death of the LeY+ organoids was correlated to the intensity LeY surface expression. Target cell death mediated by the CAR T cells required perforin and granzyme B, as potent and highly specific small molecule inhibitors of perforin (SN34960) and granzyme B (C20) applied alone or in combination greatly decreased PI uptake, indicating organoid survival. Neither inhibitor adversely affected CAR T cell viability as measured by PI and Annexin V staining. This demonstrated canonical activation of granule exocytosis pathway by the CAR T cells, leading to organoid cell death. To assess CAR T cell efficacy in vivo, we selected one PDX with high LeY expression. Monotherapy with CAR T cells failed to decrease tumour volume compared to vehicle control. However, CAR T cells given after a single dose of the chemotherapeutic agent carboplatin greatly and durably reduced tumour burden, with residual tumour mass being less than 1% of their original size (0.56 ± 0.23% of tumour volume at the start of treatment). Overall, these data provide preclinical evidence that: i) high membrane expression of LeY correlates with in vitro and in vivo CAR T cell-induced tumour cell death via the canonical perforin/granzyme B mechanism; and, ii) membrane LeY can be used as a biomarker for patient selection.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5130-5130
Author(s):  
Hongmei Jing ◽  
Lung-Ji Chang ◽  
Mingyi Chen ◽  
Fang Bao ◽  
Jing Wang ◽  
...  

Abstract A 37-year-old woman was diagnosed with DLBCL, GCB origin, positive with CD20, Bcl-2, Bcl-6, CD10 and negative with CD3, CD5, ,D21, CD23, CyclinD1. PET-CT scan showed that her lymph nodes were broadly involved. Based on PET-CT, the stage was IIIA and aaIPI score was 1. After eight cycles of R-CHOP (rituximab, cyclophosphamide, epirubicin, vincristine, and prednisone), the tumor regressed to a small retroperitoneum lesion with SUV 2.0, and she received another four cycles of rituximab for maintenance. The tumor relapsed one year later with resistance to ESHAP after she had failed multiple alternative treatments including GA101 trial, 3x DICE, MTX1g, 2x GEMOX, and 2x EPOCH. She was enrolled in a CD19-CAR (chimeric antigen receptor) T cell pilot study in January 2015. Her T cells were apheresis collected and transduced with a 4th generation, apoptosis-inducible, safety-engineered lentiviral CAR: CD19- scFv/CD28/CD137/CD27/CD3ζ-iCasp9 (4SCAR19). A personalized conditioning regimen was given based on the patient's history to chemotherapy: cyclophosphamide 500mg/d d1-3, and fludarabine 50mg/d d1-4, 40mg d5. Two days later, she received infusions of a total dose of 1.27×108 of the 4SCAR19 T cells (2x106/kg). At day 7 (D7) after infusion, she developed a fever over 39o C, which lasted for 7 days; this was controlled with NSAIDs (Non-Steroidal Anti-inflammatory Drugs). The tumor in her lymph nodes began to shrink 5 days after CAR-T infusion and she achieved nCR (near complete response) after 30 days. In a follow up PET/CT 3 months after CAR-T infusion, there was only one suspected retroperitoneum lesion (SUV 3.8) in the whole body, but it was indiscernable whether the SUV signal was tumor or T cell related. We monitored the peripheral blood CAR-T cell counts by qPCR and detected 0.03%, 0.07%, 0.3%, 9.3%, 0.01%, 1.57% on D7, D13, D48, D69, D84 and D112, respectively. In attempt to perform an autotransplantation to pursue a cure, she was mobilized twice with G-CSF on D68-D72, D110-112, plus dexamethasone 20mg/d on D101-102 and 15 mg/d on D110-111. Unexpectedly, the CAR-T cells in the patient peripheral blood increased to 9% after the first mobilization, and to 18% after the second mobilization. To this date, the patient has remained in nCR after 4SCAR19 therapy (January 23 to July 23, 2015). To our knowledge, this is the first report of evident CAR-T cell boost associated with G-CSF plus dexamethasone treatment. Further investigation is warranted to understand the molecular mechanisms behind such a favorable CAR-T therapy outcome in a terminal DLBCL disease. Disclosures Kuo: America Yuva Biomed: Employment. Liu:America Yuva Biomed: Employment. Dong:America Yuva Biomed: Consultancy.


2020 ◽  
Vol 14 (4) ◽  
pp. 312-323
Author(s):  
Romeo G. Mihăilă

Background: Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. Objective: Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. Method: A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. Results: The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges between 40 and 58%. About half of the patients may have serious side effects, such as cytokine release syndrome and neurotoxicity. Current and future developments include the improvement of CAR T-cell expansion and polyfunctionality, the combined use of CAR T-cells with a fusion protein between interferon and an anti-CD20 monoclonal antibody, with checkpoint inhibitors or small molecule sensitizers that have apoptotic-regulatory effects. Furthermore, the use of IL-12-expressing CAR T-cells, an improved technology for the production of CAR T-cells based on targeted nucleases, the widespread use of allogeneic CAR T-cells or universal CAR T-cells obtained from genetically engineered healthy donor T-cells are future developments actively considered. Conclusion: CAR T-cell therapy significantly improved the outcome of patients with relapsed or refractory diffuse large B-cell lymphoma. The advances in CAR T-cells production technology will improve the results and enable the expansion of this new immunotherapy.


2021 ◽  
Vol 22 (5) ◽  
pp. 2476
Author(s):  
Kento Fujiwara ◽  
Masaki Kitaura ◽  
Ayaka Tsunei ◽  
Hotaka Kusabuka ◽  
Erika Ogaki ◽  
...  

T cells that are genetically engineered to express chimeric antigen receptor (CAR) have a strong potential to eliminate tumor cells, yet the CAR-T cells may also induce severe side effects due to an excessive immune response. Although optimization of the CAR structure is expected to improve the efficacy and toxicity of CAR-T cells, the relationship between CAR structure and CAR-T cell functions remains unclear. Here, we constructed second-generation CARs incorporating a signal transduction domain (STD) derived from CD3ζ and a 2nd STD derived from CD28, CD278, CD27, CD134, or CD137, and investigated the impact of the STD structure and signaling on CAR-T cell functions. Cytokine secretion of CAR-T cells was enhanced by 2nd STD signaling. T cells expressing CAR with CD278-STD or CD137-STD proliferated in an antigen-independent manner by their STD tonic signaling. CAR-T cells incorporating CD28-STD or CD278-STD between TMD and CD3ζ-STD showed higher cytotoxicity than first-generation CAR or second-generation CARs with other 2nd STDs. The potent cytotoxicity of these CAR-T cells was not affected by inhibiting the 2nd STD signals, but was eliminated by placing the STDs after the CD3ζ-STD. Our data highlighted that CAR activity was affected by STD structure as well as by 2nd STD signaling.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Castelletti ◽  
Dannel Yeo ◽  
Nico van Zandwijk ◽  
John E. J. Rasko

AbstractMalignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2941
Author(s):  
Luciana R. C. Barros ◽  
Emanuelle A. Paixão ◽  
Andrea M. P. Valli ◽  
Gustavo T. Naozuka ◽  
Artur C. Fassoni ◽  
...  

Immunotherapy has gained great momentum with chimeric antigen receptor T cell (CAR-T) therapy, in which patient’s T lymphocytes are genetically manipulated to recognize tumor-specific antigens, increasing tumor elimination efficiency. In recent years, CAR-T cell immunotherapy for hematological malignancies achieved a great response rate in patients and is a very promising therapy for several other malignancies. Each new CAR design requires a preclinical proof-of-concept experiment using immunodeficient mouse models. The absence of a functional immune system in these mice makes them simple and suitable for use as mathematical models. In this work, we develop a three-population mathematical model to describe tumor response to CAR-T cell immunotherapy in immunodeficient mouse models, encompassing interactions between a non-solid tumor and CAR-T cells (effector and long-term memory). We account for several phenomena, such as tumor-induced immunosuppression, memory pool formation, and conversion of memory into effector CAR-T cells in the presence of new tumor cells. Individual donor and tumor specificities are considered uncertainties in the model parameters. Our model is able to reproduce several CAR-T cell immunotherapy scenarios, with different CAR receptors and tumor targets reported in the literature. We found that therapy effectiveness mostly depends on specific parameters such as the differentiation of effector to memory CAR-T cells, CAR-T cytotoxic capacity, tumor growth rate, and tumor-induced immunosuppression. In summary, our model can contribute to reducing and optimizing the number of in vivo experiments with in silico tests to select specific scenarios that could be tested in experimental research. Such an in silico laboratory is an easy-to-run open-source simulator, built on a Shiny R-based platform called CARTmath. It contains the results of this manuscript as examples and documentation. The developed model together with the CARTmath platform have potential use in assessing different CAR-T cell immunotherapy protocols and its associated efficacy, becoming an accessory for in silico trials.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Aleksei Titov ◽  
Ekaterina Zmievskaya ◽  
Irina Ganeeva ◽  
Aygul Valiullina ◽  
Alexey Petukhov ◽  
...  

Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


Sign in / Sign up

Export Citation Format

Share Document