T cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis

Blood ◽  
2020 ◽  
Author(s):  
Vandana Chaturvedi ◽  
Rebecca A Marsh ◽  
Adi Zoref Lorenz ◽  
Erika Owsley ◽  
Vijaya Chaturvedi ◽  
...  

Hemophagocytic lymphohistiocytosis (HLH) is a fatal disorder of immune hyperactivation which has been described as a cytokine storm. Sepsis due to known or suspected infection has also been viewed as a cytokine storm. While clinical similarities between these syndromes suggests similar immunopathology and may create diagnostic uncertainty, distinguishing them is critical as treatments are widely divergent. We examined T cell profiles from children with either HLH or sepsis and found that HLH is characterized by acute T cell activation, in clear contrast to sepsis. Activated T cells in patients with HLH were characterized as CD38high/HLADR+ effector cells, with activation of CD8+ T cells being most pronounced. Activated T cells were polarized towards Tc1/Th1 differentiation, were proliferative, and displayed evidence of recent and persistent activation. Circulating activated T cells appeared to be broadly characteristic of HLH, as they were seen in children with and without genetic lesions or identifiable infections and resolved with conventional treatment of HLH. Furthermore, we observed even greater activation and type 1 polarization in tissue infiltrating T cells, described here for the first time in a series of patients with HLH. Finally, we observed that a threshold of >7% CD38high/HLADR+ cells among CD8+ T cells had strong positive and negative predictive value for distinguishing HLH from early sepsis or healthy controls. We conclude that the cytokine storm of HLH is marked by distinctive T cell activation while sepsis is not, and that these two syndromes can be readily distinguished by T cell phenotypes.

Blood ◽  
2012 ◽  
Vol 119 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Min Chen ◽  
Kumar Felix ◽  
Jin Wang

AbstractAfter stimulation of antigen-specific T cells, dendritic cell (DCs) are susceptible to killing by these activated T cells that involve perforin and Fas-dependent mechanisms. Fas-dependent DC apoptosis has been shown to limit DC accumulation and prevent the development of autoimmunity. However, a role for perforin in the maintenance of DC homeostasis for immune regulation remains to be determined. Here we show that perforin deficiency in mice, together with the deletion of Fas in DCs (perforin−/−DC-Fas−/−), led to DC accumulation, uncontrolled T-cell activation, and IFN-γ production by CD8+ T cells, resulting in the development of lethal hemophagocytic lymphohistiocytosis. Consistently, adoptive transfer of Fas−/− DCs induced over-activation and IFN-γ production in perforin−/− CD8+ T cells. Neutralization of IFN-γ prevented the spreading of inflammatory responses to different cell types and protected the survival of perforin−/−DC-Fas−/− mice. Our data suggest that perforin and Fas synergize in the maintenance of DC homeostasis to limit T cell activation, and prevent the initiation of an inflammatory cascade.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A672-A672
Author(s):  
Sruthi Ravindranathan ◽  
Tenzin Passang Fnu ◽  
Edmund Waller

BackgroundOnly a fraction of cancer patients responds to current antibody-based immune checkpoint inhibitors.1 Our lab has identified vasoactive intestinal peptide-receptor (VIP-R) signaling as a targetable immune checkpoint pathway in cancer. VIP is a small neuropeptide with known immunosuppressive effects on T cells, in particular, CD4+ T cells.2–5 However, little is known about VIP-R signaling in CD8+ T cells. To define mechanisms by which VIP limits T cell activation and function, we studied the regulation of VIP and VIP receptors (VIP-R) in T cells following their activation in vitro and in mouse models of cancer.MethodsT cells from healthy human donors and murine splenocytes were activated using anti-CD3 coated plates. Western blots measured intracellular pre-pro-VIP, along with its cognate receptors; VPAC1 and VPAC2. Purified cultures of CD4+ and CD8+ T cells were used to interrogate the protein expression on specific T cell subsets. Activation and chemokine receptor expression was assessed by flow cytometry to evaluate T cell response to VIP-R antagonists in vitro and in tumor-bearing mice engrafted with pancreatic cancer cell lines.ResultsBoth murine and human T cells upregulate pre-pro-VIP following TCR stimulation with similar kinetics of VIP receptors between species. VIP expression is upregulated in vivo following treatment of tumor-bearing mice with anti-PD1 MoAb. VIP expression is temporally correlated with the upregulation of other co-inhibitory molecules. VPAC1 expression modestly increased in activated T cells while VPAC2 expression decreased. A non-canonical high molecular weight (HMW) form of VPAC2-related protein robustly and transiently increase in activated T cells. Expression of HMW form of VPAC2 is only detected in activated CD4+ T cells. Of note, activated CD4+ but not CD8+ T cells upregulate pre-pro-VIP. Pharmacological inhibition of VIP-R signaling significantly increased CD69+, OX40+, Lag3+, and PD1+ expression in CD4+ subsets compared to activated T cells without VIP-R antagonists (p < 0.05). In contrast, CD8+ T cells upregulate VPAC1 but not VPAC2 receptor following activation. VIP-R antagonist treatment of activated CD8+ T cells significantly decreased CXCR4+ expression (p < 0.05). CXCR3 and CXCR5 expression were not affected by VIP-R antagonist treatment.ConclusionsVIP-R signaling is a novel immune autocrine and paracrine checkpoint pathway in activated CD4+ T cells. Activated CD4+ and CD8+ T cells demonstrate different kinetics of VPAC1 and VPAC2 expression, suggesting different immune-regulatory responses to VIP-R antagonists. Understanding VIP-R signaling induced during T cell activation can lead to specific drugs that target VIP-R pathways to enhance cancer immunotherapy.AcknowledgementsWe thank healthy volunteers for blood samples. The authors also thank the shared resources at Emory University, namely, Emory Flow Cytometry Core (EFCC) and Integrated Cellular Imaging Core (ICI) and Yerkes Nonhuman Primate Genomics Core that provided services or instruments at subsidized cost to conduct some of the reported experiments. This work was supported in part by Katz Foundation funding, Georgia Research Alliance, and Emory School of Medicine Dean's Imagine, Innovate and Impact (I3) venture award to Edmund K. Waller.ReferencesDarvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Experimental and Molecular Medicine 2018.Wang HY, Jiang XM, Ganea D. The Neuropeptides VIP and PACAP Inhibit IL-2 Transcription by Decreasing c-Jun and Increasing JunB Expression in T Cells. J Neuroimmunol 2000;104(1):68–78.Delgado M. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T Cells in Vivo. J Leukoc Biol 2005.Anderson P, Gonzalez-Rey E. Vasoactive intestinal peptide induces cell cycle arrest and regulatory functions in human T cells at multiple levels. Mol Cell Biol 2010.Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids. NIH Public Access July 2013, 25–39.Ethics ApprovalDe-identified blood samples from consented healthy volunteers (IRB 00046063) were obtained with approval from Institutional Review Boards.


2021 ◽  
Vol 6 (57) ◽  
pp. eabf7570
Author(s):  
Laura A. Vella ◽  
Josephine R. Giles ◽  
Amy E. Baxter ◽  
Derek A. Oldridge ◽  
Caroline Diorio ◽  
...  

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


2021 ◽  
pp. annrheumdis-2020-219335
Author(s):  
Emma Garcia-Melchor ◽  
Giacomo Cafaro ◽  
Lucy MacDonald ◽  
Lindsay A N Crowe ◽  
Shatakshi Sood ◽  
...  

ObjectivesIncreasing evidence suggests that inflammatory mechanisms play a key role in chronic tendon disease. After observing T cell signatures in human tendinopathy, we explored the interaction between T cells and tendon stromal cells or tenocytes to define their functional contribution to tissue remodelling and inflammation amplification and hence disease perpetuation.MethodsT cells were quantified and characterised in healthy and tendinopathic tissues by flow cytometry (FACS), imaging mass cytometry (IMC) and single cell RNA-seq. Tenocyte activation induced by conditioned media from primary damaged tendon or interleukin-1β was evaluated by qPCR. The role of tenocytes in regulating T cell migration was interrogated in a standard transwell membrane system. T cell activation (cell surface markers by FACS and cytokine release by ELISA) and changes in gene expression in tenocytes (qPCR) were assessed in cocultures of T cells and explanted tenocytes.ResultsSignificant quantitative differences were observed in healthy compared with tendinopathic tissues. IMC showed T cells in close proximity to tenocytes, suggesting tenocyte–T cell interactions. On activation, tenocytes upregulated inflammatory cytokines, chemokines and adhesion molecules implicated in T cell recruitment and activation. Conditioned media from activated tenocytes induced T cell migration and coculture of tenocytes with T cells resulted in reciprocal activation of T cells. In turn, these activated T cells upregulated production of inflammatory mediators in tenocytes, while increasing the pathogenic collagen 3/collagen 1 ratio.ConclusionsInteraction between T cells and tenocytes induces the expression of inflammatory cytokines/chemokines in tenocytes, alters collagen composition favouring collagen 3 and self-amplifies T cell activation via an auto-regulatory feedback loop. Selectively targeting this adaptive/stromal interface may provide novel translational strategies in the management of human tendon disorders.


2000 ◽  
Vol 165 (8) ◽  
pp. 4305-4311 ◽  
Author(s):  
Gérard Eberl ◽  
Pierre Brawand ◽  
H. Robson MacDonald

Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 795-803 ◽  
Author(s):  
Katia Urso ◽  
Arantzazu Alfranca ◽  
Sara Martínez-Martínez ◽  
Amelia Escolano ◽  
Inmaculada Ortega ◽  
...  

Abstract The nuclear factor of activated T cells (NFAT) family of transcription factors plays important roles in many biologic processes, including the development and function of the immune and vascular systems. Cells usually express more than one NFAT member, raising the question of whether NFATs play overlapping roles or if each member has selective functions. Using mRNA knock-down, we show that NFATc3 is specifically required for IL2 and cyclooxygenase-2 (COX2) gene expression in transformed and primary T cells and for T-cell proliferation. We also show that NFATc3 regulates COX2 in endothelial cells, where it is required for COX2, dependent migration and angiogenesis in vivo. These results indicate that individual NFAT members mediate specific functions through the differential regulation of the transcription of target genes. These effects, observed on short-term suppression by mRNA knock-down, are likely to have been masked by compensatory effects in gene-knockout studies.


2021 ◽  
Vol 478 (6) ◽  
pp. 1303-1307
Author(s):  
Kriti Bahl ◽  
Jeroen P. Roose

Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.


Blood ◽  
2021 ◽  
Author(s):  
Muzaffar H Qazilbash ◽  
Neeraj Y Saini ◽  
Cha Soung-chul ◽  
Zhe Wang ◽  
Edward Stadtmauer ◽  
...  

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding anti-myeloma idiotype-keyhole limpet hemocyanin (Id-KLH) vaccine to vaccine-specific co-stimulated T cells. In this randomized, phase II trial, eligible patients received either the control (KLH only) or Id-KLH vaccine, an auto-transplant, vaccine-specific co-stimulated T-cells expanded ex-vivo, and two booster doses of the assigned vaccine. In 36 patients (20 in KLH, 16 in Id-KLH) enrolled, no dose-limiting toxicity was seen in either arm. At last evaluation, 6 (30%) and 8 (50%) had achieved complete remission in KLH-only and Id-KLH, respectively (p=0.22) and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; p=0.32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with KLH-only patients, there was a greater change in IR genes in T-cells in Id-KLH patients relative to baseline. Specifically, upregulation of genes associated with activation, induction of effector function, and generation of memory CD8+ T cells after Id-KLH, but not after KLH control vaccination, was observed. Similarly, responding patients across both arms were associated with upregulation of genes associated with T-cell activation. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of Id-KLH patients analyzed. In conclusion, in this combination immunotherapy approach, we observed a significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies.


2008 ◽  
Vol 19 (2) ◽  
pp. 701-710 ◽  
Author(s):  
Isabel María Olazabal ◽  
Noa Beatriz Martín-Cofreces ◽  
María Mittelbrunn ◽  
Gloria Martínez del Hoyo ◽  
Balbino Alarcón ◽  
...  

The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A730-A730
Author(s):  
Wenqing Jiang ◽  
Zhengyi Wang ◽  
Zhen Sheng ◽  
Jaeho Jung ◽  
Taylor Guo

Background4-1BB (CD137) is a co-stimulatory receptor that stimulates the function of multiple immune cells. Its ability to induce potent anti-tumor activity makes 4-1BB an attractive target for immuno-oncology. However, clinical development of a monospecific 4-1BB agonistic antibody has been hampered by dose-limiting hepatic toxicities. To minimize systemic toxicities, we have developed a novel Claudin18.2 (CLDN18.2) x 4-1BB bispecific antibody, TJ-CD4B (ABL111) that stimulates 4-1BB pathway only when it engages with Claudin 18.2, a tumor-associated antigen specifically expressed in gastrointestinal cancers. TJ-CD4B (ABL111) is now being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT04900818).MethodsTJ-CD4B (ABL111) was evaluated in vivo using the human 4-1BB knock-in mice bearing CLDN18.2 expressing MC38 tumor cells. Pharmacodynamic effects upon treatment were characterized in tumor tissue and blood. Immunophenotyping of the tumor microenvironment (TME) and peripheral blood was performed by flow cytometry. Soluble biomarkers were measured using Luminex-based multiplex assay. In-depth gene expression analysis was performed on primary human CD8+ T cells that were co-cultured with CLDN18.2 expressing cells in the presence of anti-CD3 using NanoString nCounter®. Pharmacokinetic (PK) and toxicity study were performed in cynomolgus monkeys.ResultsTJ-CD4B (ABL111) elicited complete tumor regression in 13 out of 18 MC38 tumor bearing mice given at a dose above 2 mg/kg. Dose-dependent anti-tumor activity was associated with enhanced T cell activation in TME and expansion of memory T cells in the peripheral blood. Increased CD8+ T cells number and proliferation were observed in both tumor nest and surrounding stroma while the level of soluble 4-1BB in the serum was also elevated in response to the treatment. In vitro gene expression analysis by Nanostring revealed TJ-CD4B(ABL111) effectively activated immune pathways characterized by IFN?-signaling and T cell inflammation. Preclinically, TJ-CD4B was well tolerated at the repeated doses up to 100 mg/kg/wk in cynomolgus monkeys without the adverse influence on the liver function which is generally affected by 4-1BB activation. Besides, no cytokine release or immune activation was observed in the periphery.ConclusionsTJ-CD4B (ABL111) is a novel CLDN18.2 dependent 4-1BB bispecific agonist antibody that induced T cell activation and memory response in tumor with CLDN18.2 expression, leading to a strong anti-tumor activity in vivo. TJ-CD4B did not induce systemic immune response nor hepatic toxicity due to the CLDN18.2 dependent 4-1BB stimulation. These data warrant the current clinical development in phase I trial to validate the safety properties and tumor specific responses.


Sign in / Sign up

Export Citation Format

Share Document