Aberrant Stabilization of c-Myc Protein in Lymphoblastic and Myelogenous Leukemia Cell Lines.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1532-1532
Author(s):  
Suman Malempati ◽  
Rosalie C. Sears

Abstract The c-Myc oncoprotein is a key regulator of cell fate decisions including proliferation, differentiation, and apoptosis. Orderly control of c-Myc protein levels is important in maintaining regulated cell proliferation in normal cells. While c-Myc overexpression is seen in many hematopoietic malignancies, the reason for high protein levels in most cases is unknown and, in general, is not the result of translocations or gene amplification. C-Myc levels vary with cell cycle and are kept very low in quiescent cells. Protein half-life is controlled by phosphorylation at two specific N-terminal sites, Serine 62 and Threonine 58, which regulate c-Myc degradation by the ubiquitin proteasome pathway. Two Ras-dependent signaling pathways (Raf/MEK/ERK and PI(3)K/Akt) modulate phosphorylation at Serine 62, which stabilizes the protein, and Threonine 58, which targets Myc for ubiquitination and subsequent degradation. We recently reported that a stabilized form of c-Myc (c-Myc T58A) contributes to oncogenic transformation of human cells in culture (Yeh et al, Nat. Cell Bio.6:308–318, 2004). Here we describe the role of c-Myc protein stabilization in 2 pediatric ALL cell lines (REH and Sup-B15), 1 AML cell line (HL-60), and 1 CML cell line (K562). Markedly higher expression of c-Myc protein was seen in all 4 cell lines as compared to normal peripheral blood mononuclear cells (PBMCs). FISH analysis demonstrated amplification of the c-myc gene in HL-60 cells as has been previously reported, but not in REH, Sup-B15, or K562 cells. Using [35S]methionine pulse-chase analysis we demonstrate that the half-life of c-Myc in REH (55 minutes), Sup-B15 (47 minutes), and K562 (40 minutes) cells is longer than in normal PBMCs (9 to 15 minutes), but is not significantly prolonged in HL60 cells. We provide additional functional evidence for aberrant protein stabilization based on greater elevation of c-Myc protein after proteasome inhibition in PBMCs and HL-60 cells than in REH, Sup-B15, or K562 cells. These results suggest that that abnormalities in c-Myc degradation exist upstream of ubiquitination in the ALL and CML cell lines. Consistent with this hypothesis, experimental inhibition of the PI(3)K pathway knocked down c-Myc levels in REH and Sup-B15 cells, an effect that was abrogated by concomitant proteasome inhibition. This result suggests that abnormal activation of the PI(3)K pathway could participate in c-Myc stabilization in these cells. In addition, destabilization of c-Myc by PI(3)K inhibition correlated with a significant decrease in cell proliferation. In conclusion, we demonstrate that aberrant stabilization of c-Myc protein occurs in human leukemia cell lines. Affecting the c-Myc degradation pathway in hematopoietic malignancies that have stabilized c-Myc may constitute a novel therapeutic target. Additional experiments are ongoing to assess c-Myc stability in primary cells from leukemic bone marrow samples.

Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 3012-3020 ◽  
Author(s):  
H Hirvonen ◽  
V Hukkanen ◽  
TT Salmi ◽  
TP Makela ◽  
TT Pelliniemi ◽  
...  

Abstract The myc proto-oncogenes encode nuclear phosphoproteins, which are believed to participate in the control of cell proliferation and differentiation. Deregulated expression of c-myc has been implicated in several human hematopoietic malignancies. We have studied the expression and mRNA processing of human L-myc, N-myc, and c-myc genes in a panel of human leukemias, leukemia cell lines, and normal hematopoietic cells. L-myc mRNA was expressed in three acute myeloid leukemias (AML) studied and in several myeloid leukemia cell lines. Only low expression levels were observed in adult bone marrow and in fetal spleen and thymus. The K562 and Dami leukemia cell lines showed a unique pattern of L-myc mRNA processing, with approximately 40% of L- myc mRNA lacking exon III and intron I. N-myc was expressed in five of six AML cases studied, in one of nine acute lymphocytic leukemia (ALL) cases, and in several leukemia cell lines, while c-myc mRNA was detected in all leukemias and leukemia cell lines studied. Coexpression of all three myc genes was observed in Dami and MOLT-4 cell lines and in two AMLs, and either L-myc or N-myc was coexpressed with c-myc in several other cases. These results show that in addition to c-myc, the L-myc and N-myc genes are expressed in some human leukemias and leukemia cell lines, and suggest a lack of mutually exclusive cross- regulation of the myc genes in human leukemia cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1986-1986
Author(s):  
Xuejun Zhang ◽  
Li Wen ◽  
Fuxu Wang ◽  
Ling Pan ◽  
Jianmin Luo ◽  
...  

Abstract Tumor Necrosis factor (TNF)-related apoptosis- inducing ligand (TRAIL) is a new member of TNF superfamily discovered recently. Several studies showed that TRAIL can preferentially induce apoptosis in a variety of tumor cells, while most normal cells tested do not appear to be sensitive to TRAIL. In the present study, we treated K562 and U937 leukemia cell lines with recombinant mutant human TRAIL (rmhTRAIL) alone or together with daunorubicin (DNR) to investigate the apoptosis of the treated cells and the synergistic reaction of rmhTRAIL and DNR. The normal cell line MRC-5 was used as control. The expression of four TRAIL receptors mRNA (death receptor DR4 and DR5, decoy receptor DcR1 and DcR2) in the cells lines were detected before and after the treatment by DNR. (1) AO-EB double staining and TUNEL staining were used to evaluate the morphological change of leukemia cell lines before and after the treatment. The results showed that rmhTRAIL could induce the apoptosis of leukemia cell lines and a dose-dependent manner was found in leukemia cell lines but not in MRC-5 cell lines. (2) The growth inhibition rate of leukemia cell lines induced by rmhTRAIL alone or combined with DNR was examined with MTT assays. Different concentrations of rmhTRAIL(8, 40, 200, 1000ng/mL)alone or combined with DNR(8, 40, 200, 1000ng/mL) was used. The result showed a dose-dependent growth inhibition by rmhTRAIL alone for K562- and U937-cell line (P<0.05) also, but not for MRC-5 cell line (P>0.05). The IC50 for K562 cells and for U937 cells had no statistic difference (538.80 vs 301.56ng/mL, P>0.05). In leukemia cell lines, the growth inhibition rates in combination groups were much higher than in rmhTRAIL or DNR alone groups (P<0.05), and no synergistic killing effects was found in MRC-5 cells (P<0.05). It was concluded that rmhTRAIL had synergistic effects with DNR in the growth inhibition of K562 and U937 cells. (3). To explore the antitumor mechanisms of rmhTRAIL combined with DNR, the expression level of the DR4, DR5 and DcR1, DcR2 mRNA in these three cell lines was examined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) before and after the treatment with DNR. The high expression of DR4,DR5 mRNA in the tested cells were observed before the treatment of DNR, while very low or even undetectable expression level of DcR1 and DcR2 mRNA were observed in U937 and K562 cells, and a high expression level of DcR1 and DcR2 mRNA in MRC-5 cells were observed. After 24 hours treatment of three cell lines with DNR (200ng/ml), the expression level of DR5 mRNA increased in K562 and U937 cells (P<0.05). DR4 mRNA also increased in K562 cells but not in U937 cells. There was no change in DcR1 and DcR2 mRNA level in three cell lines. The four receptors’ mRNA level in MRC-5 cells was not influenced by DNR. Our results indicated that rmhTRAIL could induce the apoptosis of leukemia cell lines, and DNR could enhance significantly the sensitivity of K562 and U937 cells to apoptosis induced by rmhTRAIL through up-regulation of death receptors. Therefore, we presumed TRAIL might be act as a new agent for biological therapy in leukemia.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4341-4341
Author(s):  
Mingying Zhang ◽  
Fangnan Xiao ◽  
Yunan Li ◽  
Zizhen Chen ◽  
Xiaoru Zhang ◽  
...  

Abstract Introduction: Chemoresistance and disease relapse remain the main obstacles responsible for treatment failure in leukemia. MicroRNAs (miRNAs) play essential roles in various physiological and pathological processes, including cell proliferation, differentiation, metabolism, and cancer development. The miR-106b-25 cluster consists of three miRNAs: miR-106b, miR-93 and miR-25. We have previously reported that miR-106b-25 was associated with chemoresistance by negatively regulated EP300 in breast cancer, but its role in hematological malignancies has not yet been elucidated. Here, we aim to clarify the biological role and underlying mechanisms of miR-106b-25 on drug resistance in leukemia. Methods: To see whether the miR-106b-25 was associated with the poor prognosis of AML patients, enriched LSCs (CD34 + cells) were isolated from the bone marrow of 18 newly diagnosed AML patients, the expression of miR-106b, miR-93, and miR-25 were examined, respectively. The expression levels of miR-106b, miR-93 and miR-25 were further determined in the doxorubicin-resistant leukemia cell line K562/A02 and HL60/ADR, compared with their parental cell lines. In addition, K562 cells were transduced with lentiviral vectors carrying miR-106b-25, and cell proliferation, drug resistance, colony-forming assay, apoptosis assays were performed to explore the function of miR-106b-25 overexpression in leukemia cells in vitro. To investigate the role of miR-106b-25 on tumor growth and overall survival after drug treatment, we performed xenotransplantation in nude mice using miR-106b-25 overexpressed K562 cells. To further clarify the function of each microRNA function in this cluster, K562 cells were also transduced with lentiviral vectors carrying individual miR-25, miR-93, or miR-106b separately. Cell proliferation, colony forming assay and cell apoptosis assay were also carried out subsequently. Simultaneously, RNA-sequencing was performed to reveal the underlying mechanisms of miR-106b-25 in the chemoresistance of myeloid leukemia. To experimentally confirm the direct target of the miR-106b-25 cluster in AMLs, we further performed a dual-luciferase reporter assay. Results: Upregulated miR-106b, miR-93 and miR-25 expression in enriched LSCs were significantly associated with shortened overall survival of AML patients. We also found miR-106b, miR-93 and miR-25 were significantly upregulated in drug-resistant leukemia cell lines compared with its parental cell lines. Overexpression of miR-106b-25 cluster promoted cell proliferation, led to resistance of K562 cells to doxorubicin, imatinib and ABT-737 (BCL-2 inhibitor) in liquid culture and drug-resistant colony-forming assays. Overexpression of miR-93 or miR-106b accelerated cell growth, and all the three miRNAs can promote drug-resistant colony-forming and inhibit cell apoptosis. RNA-sequencing (RNA-Seq) data revealed that multiple critical genes related to apoptotic pathways were downregulated after overexpressing miR-25, miR-93, miR-106b as well as the whole cluster, such as TP73, BAX, BAK1, Caspase-7, CDKN1A and BTG2. RT-qPCR confirmed that these genes are reduced with or without ABT-737 treatment. Luciferase assay further identified TP73 was a direct target of miR-93 and miR106b, BAK1 was a direct target of miR-25, and CASPASE-7 was a direct target of all these three miRNAs. Conclusions: In summary, we made the novel observation that miR-106-25 is associated with AML drug-resisitance and disease prognosis and identified TP73, BAK1 caspase-7 as a novel direct target of this cluster. Further studies revealed that the biological effects of miR-106b-25 cluster on leukemic cell proliferation, chemoresistance and apoptosis were mediated through regulation of apoptotic pathway. These findings indicate a promising diagnostic biomarker and a potential target therapeutic strategy for AML patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5201-5201
Author(s):  
Shaowei Qiu ◽  
Jing Yu ◽  
Tengteng Yu ◽  
Haiyan Xing ◽  
Na An ◽  
...  

Abstract Introduction: As the important suprressor of P53, iASPP was found to be overexpressed in leukemia, and functioned as oncogene that inhibited apoptosis of leukemia cells. Sertad1 is identified as one of the proteins that can bind with iASPP in our previous study by two-hybrid screen. Sertad1 is highly expressed in carcinomas from pancreatic, lung and ovarian tissues, which considered Sertad1 as an oncoprotein. In this study, our findings revealed that Sertad1 could interact with iASPP in the cytoplasm near nuclear membrane, which could block iASPP to enter into nucleus to interact with P53, and inhibited the function of iASPP eventually. Methods: Co-immunoprecipitation and fluorescence confocal microscopic imaging were used to confirm the interaction between iASPP and Sertad1, the exact binding domains and the subcellular colocalization.The plasmids of iASPP and Sertad1 were transfected alone or co-transfected into K562 cells, the stable subclones that highly expressed iASPP, Sertad1 or both of them were then established by limiting dilution and named as K562-iASPPhi, K562-Sertad1hi, and K562-Douhi, respectively. The cell proliferation, cell cycle and apoptosis of above subclones were investigated by flow cytometry. Further, silence of the above two proteins was performed to confirm their functions. Immunoblotting analysis and immunofluorescence were performed to explore the possible mechanisms of difference between the biological functions of the above subclones. Results: Sertad1 expression level varied in leukemic cell lines and AML patients irrespectively of iASPP and P53. Interaction between iASPP and Sertad1 did exist in 293 cell and leukemic cells, both iASPP and Sertad1 scattered in the cytoplasm and nucleus, and their colocalizations were mainly in the cytoplasm, which encircled the nucleus. iASPP binds directly to Sertad1 through its PHD-bromo domain, C-terminal domain and Cyclin-A domain in a reduced order, and Serta domain failed to bind to iASPP. Overexpression of iASPP in K562 cells (iASPPhi) could result in the increased cell proliferation, cell cycle arrest in G2/M phase and resistance to apoptosis induced by chemotherapy drugs. While overexpression of iASPP and Sertad1 at the same time (Douhi) could slow down the cell proliferation, lead the cells more vulnerable to the chemotherapy drugs. As figure showed, in K562-Douhi cells, both iASPP and Sertad1 were obviously located in the cytoplasm, which encircled the nuclei, the subcellular colocalization was nearly outside the nuclei. The immunoblotting analysis further supported the conclusions. The resistance of iASPP to chemotherapeutic drug was accompanied by Puma protein expression in a p53-independent manner. By knocking down the expersssion of iASPP and Sertad separately, we found that iASPP is dispensable for maintenance of anti-apoptotic function and Sertad1 is indispensable for cell cycle in leukemic cells. Conclusions: In normal situation, the protein iASPP and Sertad1 scatter in the nucleus and cytoplasm, mainly in the cytoplasm. As convinced by our study, iASPP was overexpressed in the leukemia cell lines and primary AML patients, it could function as oncogene through its binding with P53 protein in the nucleus, inhibit the function of P53. When iASPPhi cells were exposed to apoptosis stimuli, Puma protein could play an important role in this process, irrespective of the expression level of P53. But when iASPP and Sertad1 were both overexpressed in the leukemic cells, Sertad1 could tether iASPP outside the nucleus mainly through its PHD-bromo domain, prevent it from inhibiting P53 function, suppress the leukemic cell growth and stimulate cell apoptosis by rescuing the P53 eventually. Our data provided a new insight to overcome iASPP protein, namely through its binding partners, when the similar proteins or drugs that can tether iASPP outside the nucleus such as Sertad1 are transfected into the leukemic cells, it may restore p53 function to eliminate the leukemic cells. Figure 1 Figure 1. Disclosures Wang: Novartis: Consultancy; Bristol Myers Squibb: Consultancy.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3837-3843 ◽  
Author(s):  
A Benito ◽  
M Silva ◽  
D Grillot ◽  
G Nunez ◽  
JL Fernandez-Luna

The induction of tumor cell differentiation represents an attractive strategy for the treatment of a wide range of malignancies. Differentiation of HL-60 promyelocytic leukemia cells towards neutrophils or monocytes has been shown to induce apoptotic cell death, which is inhibited by bcl-2 over-expression. However, the role of the bcl-2 gene family during erythroid differentiation of human leukemia cells remains unknown. We found that human erythroleukemia (HEL) and K562, two leukemia cell lines that undergo erythroid differentiation do not express Bcl-2, but express Bcl-XL, a related protein that functions as an inhibitor of apoptosis. Differentiation of HEL or K562 cells with inducers of erythroid differentiation (hemin, retinoic acid, or transforming growth factor-beta) was accompanied by progressive cell death and degradation of genomic DNA into oligonucleosomal fragments. The loss of cellular viability was associated with downregulation of bcl-xL mRNA and protein. In contrast, the levels of Bax, another Bcl-2 family member implicated in apoptosis remained unaltered. Constitutive expression of Bcl-XL by gene transfer inhibited apoptosis triggered by erythroid differentiation of HEL K562 cells. Yet, Bcl-XL did not alter the expression of epsilon-globin, which is induced during erythoid differentiation of HEL and K562 cells, arguing that apoptosis and differentiation can be uncoupled by Bcl-XL. These results indicate that Bcl-XL acts as an antiapoptosis protein in leukemia cells that undergo erythroid differentiation and that downregulation of bcl-x is a component of the apoptotic response that is coupled to differentiation in human leukemia cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5957-5957
Author(s):  
Marie-Magdelaine Coudé ◽  
Thorsten Braun ◽  
Jeannig Berrou ◽  
Mélanie Dupont ◽  
Raphael Itzykson ◽  
...  

Abstract Background: The bromodomain-containing protein 4 (BRD4) activates the transcription elongation factor b (P-TEFb) which regulates RNA polymerase II. Conversely, hexamethylene bisacetamide (HMBA) inducible protein 1 (HEXIM1) inactivates P-TEFb. BRD4/HEXIM1 interplay influences cell cycle progression and tumorigenesis. It has been widely demonstrated that BRD4 knockdown or inhibition by JQ1 is associated with c-MYC downregulation and antileukemic activity. We recently reported that the small molecule BRD2/3/4 inhibitor OTX015 (Oncoethix, Lausanne, Switzerland), currently in clinical development, mimics the effects of JQ1 (Braun et al, ASH 2013). We evaluated the effect of OTX015 on c-MYC, BRD2/3/4, and HEXIM1 in human in vitro leukemic models. Methods: c-MYC, BRD2/3/4 and HEXIM1 expression was assessed in six acute myeloid leukemia (AML; K562, HL-60, NB4, NOMO-1, KG1, OCI-AML3) and two acute lymphoid leukemia (ALL; JURKAT and RS4-11) cell lines after exposure to 500 nM OTX015. Quantitative RT-PCR and Western blotting were performed at different time points (24-72h). A heatmap was computed with R-software. Results: c-MYC RNA levels were ubiquitously downregulated in all AML and ALL cell lines after 24h exposure to OTX015 (Figure 1). c-MYC protein levels decreased to a variable extent at 24-72h in all cell lines evaluated other than KG1. BRD2, BRD3 and BRD4 mRNA expression was significantly decreased in K562 cells (known to be OTX015-resistant) after 48h exposure to OTX015 but was increased in HL60 and NOMO-1 cells, while minimal to no increases were observed in other cell lines. OTX015 induced a decrease in BRD2 protein expression in most cell lines, but not in K562 cells. In contrast, decreased BRD4 protein expression was only seen in the OCI-AML3, NB4 and K562 cell lines. BRD3 protein levels were not modified after OTX015 exposure in all cell lines evaluated other than KG1. HEXIM1 mRNA expression increased after 24h exposure to 500 nM OTX015 in all cell lines except OTX015-resistant K562 cells in which the increase was considered insignificant (less than two-fold). Increases in HEXIM1 protein levels were observed in OCI-AML3, JURKAT and RS4-11 cell lines at 24-72h but not in K562 cells. Conclusion: Taken together, these results show that BRD inhibition by OTX015 modulates HEXIM1 gene and protein expression, in addition to c-MYC decrease and BRD variations. HEXIM1 upregulation seems to be restricted to OTX015-sensitive cell lines and was not significantly affected in OTX015-resistant K562 cells. Further studies are needed to clarify the role of HEXIM1 in antileukemic activity of BRD inhibitors. Figure 1: Heatmap of gene expression after exposure to 500 nM OTX015 for 24 or 48h in AML and ALL cell lines. Repression in blue. Overexpression in red. Figure 1:. Heatmap of gene expression after exposure to 500 nM OTX015 for 24 or 48h in AML and ALL cell lines. Repression in blue. Overexpression in red. Disclosures Riveiro: OTD: Employment. Herait:OncoEthix: Employment. Dombret:OncoEthix: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3523-3523
Author(s):  
Danielle Garshott ◽  
Nicole Melong ◽  
Tania T. Sarker ◽  
Yue Xi ◽  
Amy Brownell ◽  
...  

Abstract Background: Acute leukemias are the most common cancers in childhood. Despite multi-agent chemotherapy protocols and the introduction of novel molecularly targeted therapies which have resulted in improved survival over the last few decades, relapsed acute lymphoblastic leukemia remains the second most common pediatric cancer diagnosis. In addition, morbidities from current chemotherapy regimens are unacceptably high. Abundant evidence point to a major role for mediators of the unfolded protein response (UPR) in normal and leukemic white blood cell biology. We have demonstrated that activation of the UPR is a productive approach to inhibit the proliferation of solid tumor cell lines in vitro and to reducing xenograft burden in vivo. The UPR consists of genetically distinct mechanisms that serve to clear misfolded proteins from the endoplasmic reticulum (ER) and enhance protein folding, or induce apoptosis if the initiating stress is prolonged or robust. ML291 is a novel UPR-inducing sulfonamidebenzamide, identified through cell-based high throughput screening and iterative SAR-guided chemical synthesis, that overwhelms the adaptive capacity of the UPR and induces apoptosis in a variety of solid cancer models. Objective: To determine the ability of ML291 to activate the UPR and induce apoptosis in a panel of leukemia cell lines, and to use CHOP-null K562 cells to elucidate the relative contribution of the UPR. We hypothesized that ML291 might activate the PERK/eIF2a/CHOP (apoptotic) arm of the UPR and reduce leukemic cell burden in vitro and in vivo. Methods: MTT and luciferase-based proliferation assays, flow cytometry and RT-qPCR were used to evaluate cell growth, UPR activation and apoptosis in a panel of leukemia cell lines that included AML, ALL and CML in cells exposed to ML291. CRISPR-Cas9 genome editing was used to delete CHOP in K562 (human myeloid leukemia) cells. Deletion was validated by immunoblot analysis and these cells were subjected to the same proliferation and gene analyses described above. The in vivo response to ML291 therapy was evaluated in an established zebrafish xenograft assay (Corkery et al. BJH 2011) in which embryos were xenotransplanted with wild type or CHOP knockdown K562 cells and embryos bathed in ML291. Results: Immunoblot and RT-qPCR analysis revealed an accumulation of proteins and increased gene expression for downstream UPR genes, including CHOP, GRP78/BiP, GADD34 and XBP1 in leukemia cells following ML291 treatment, indicating the activation of the UPR. Increased expression of the apoptotic genes, NOXA, PUMA and DR5 was also observed post-treatment with ML291; and dose response proliferation assays performed after 24 hours revealed IC50 concentrations of 1 - 30µM across cell lines. CHOP deleted K562 cells were protected from cell death when cultured with increasing concentrations of ML291, and were significantly less able to translocate phosphatidylserine across the cell membrane and activate the caspase cascade. When zebrafish embryos xenotransplanted with K562-wild type or -CHOP-null cells were bathed in water containing 5mM ML291 for three days, there was a significant reduction in leukemia cell burden exclusively in theK562 wild type xenografts. Conclusion: Collectively these data indicate that intact PERK/eIF2a/CHOP signaling is required for efficient leukemic cell apoptosis in response to ML291 in vitro and in vivo, and support the hypothesis that small molecule enforcement of the UPR might be a productive therapeutic approach in leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 245-255 ◽  
Author(s):  
JP Liuzzo ◽  
D Moscatelli

Basic fibroblast growth factor (bFGF) has been identified as an important cytokine for blood cells. To determine whether hematopoietic cells have receptors that recognize bFGF, the ability of human leukemia cell lines to bind 125I-bFGF was investigated. Specific bFGF-binding sites were identified on K562 and HL60 cells, but not on U937 cells. DAMI cells bound low amounts of 125I-bFGF specifically. Binding of 125I- bFGF to K562 cell surfaces was reduced in a dose-dependent manner by unlabeled bFGF or by heparin. Scatchard analysis of binding to K562 cells revealed two classes of binding sites: 1,650 high affinity binding sites per cell with a dissociation constant (kd) of 192 pmol/L, and 36,600 low affinity sites per cell with a kd of 9.3 nmol/L. Chemical crosslinking experiments with K562, HL60, and DAMI cells revealed receptor-growth factor complexes with molecular masses of 140 to 160 kD, similar in size to complexes formed by known receptor species. Binding of 125I-bFGF to K562 cells was sensitive to heparinase treatment but not to chondroitinase treatment, suggesting that heparan sulfate proteoglycans (HSPGs) may be responsible for the low affinity binding sites. To further investigate whether K562 cells make HSPG, the incorporation of 35SO4 into proteoglycans was assessed. Metabolically labeled cell-surface proteoglycans with molecular masses of 180 to 300 kD were identified in K562 cells. These proteoglycans were sensitive to heparinase, demonstrating that K562 cells synthesize bFGF-binding HSPG. Treatment of K562 cells with phorbol-12-myristate-13-acetate (PMA) caused a loss of bFGF-binding capacity. This decreased binding capacity reflected a rapid loss of high affinity receptors. The ability to form bFGF-receptor complexes decreased by 65% to 70% within 1 hour and declined continuously thereafter. The decrease in binding of bFGF was not due to an autocrine downregulation of bFGF receptors, because there was no increase in bFGF after PMA treatment as detected by Western blotting, and suramin, which blocks bFGF binding to receptors, did not prevent the loss of receptors after exposure to PMA. In addition, inhibitors of either protein synthesis or protease activity did not prevent the loss of bFGF receptors in PMA-treated cells. In summary, this work demonstrates that leukemia cell lines have receptors that specifically bind bFGF and supports the hypothesis that bFGF acts directly on certain blood cells to stimulate their proliferation.


Sign in / Sign up

Export Citation Format

Share Document