Generation of Zebrafish Lines with New Gata1 Mutations and Their Characterization with a Novel In Vitro Colony-Forming Assay.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1336-1336
Author(s):  
Raman Sood ◽  
Linda Rivera ◽  
Jagman Chahal ◽  
Anthony Burnetti ◽  
Milton English ◽  
...  

Abstract Gata1 is a transcription factor critical for erythroid and megakaryocyte differentiation. We have shown previously that the lethal bloodless phenotype of the zebrafish mutant vlad tepes (vlt) is due to a nonsense mutation in gata1, suggesting that hematopoietic regulation is conserved between zebrafish and mammals. We have now generated fish with 2 novel missense mutations, T301K and K333R, identified by sequencing exons 5 and 6 in 1235 F1 fish derived from ENU-mutagenized males. Both mutations change conserved residues in the C-terminal zinc finger domain of gata1. Embryos homozygous for either T301K or K333R mutation showed normal circulation and survived to adulthood. Reduced hemoglobin levels were observed in T301K homozygous embryos compared to K333R homozygotes and wildtype by o-dianisidine staining. We crossed both mutations to vlt carrier fish and generated compound heterozygotes for further evaluation. T301K/vlt compound heterozygous embryos lacked circulation and hemoglobin staining, whereas K333R/vlt embryos had normal circulation and hemoglobin staining. These data suggest that the T301K mutation acts as a hypomorphic allele, having stronger phenotype in the presence of a null allele. Fish with both T301K/vlt and K333R/vlt genotypes survive to adulthood in expected Mendelian ratios. Time course observations show that T301K/vlt fish regain circulation around day 14, which is the time when most vlt/vlt fish die. These data suggest that during definitive hematopoiesis cells may be less sensitive to gata1 deficiency. In addition, we observed reduced number of circulating platelets in vlt/vlt embryos but normal in T301K/vlt embryos, suggesting that megakaryocyte maturation is regulated by gata1 in zebrafish. The in vitro culture of hematopoietic progenitors has been a powerful tool to study mammalian hematopoiesis, but similar techniques have not been available in the zebrafish. We hypothesized that the use of the zebrafish orthologs of Stem Cell Factor (scf) and Erythropoietin (epo) in semi soild medium would allow the growth and enumeration of colonies derived from zebrafish kidney cells. Based on homology to mammalian proteins, we identified zebrafish scf and epo cDNA clones (40.8% and 49.7% similarities to human SCF and EPO respectively), and expressed them in 293 cells. Methylcellulose medium containing conditioned medium from transfected cells was mixed with 105 to 106 adult kidney cells. No colonies developed in cultures with mock transfected 293 conditioned medium. In contrast, small erythroid colonies appeared between 2 to 6 days in cultures containing epo and/or scf conditioned medium. Larger erythroid colonies were detected in 8 to12 days. In the presence of scf, additional distinct colonies comprising of monocytes, neutrophils and/or erythroid cells were observed. Cultures of adult kidney cells from T301K/vlt and T301K/T301K fish showed 2–6 fold reduction (p=0.01 and 0.006 respectively) in the number of colonies. These results are consistent with the reduced number of hematopoietic cells observed in kidney sections of adult T301K homozygotes. In conclusion, we have generated gata1 mutant fish that revealed a conserved role of gata1 in zebrafish erythroid and megakaryocyte developments. The viable gata1 mutants and our novel in vitro differentiation system will be useful for studying the role of gata1 in adult hematopoiesis and in leukemogenesis. The mutants will also serve as an ideal system for genetic modifier screens.

2012 ◽  
Vol 123 (11) ◽  
pp. 635-647 ◽  
Author(s):  
Radko Komers ◽  
Shaunessy Rogers ◽  
Terry T. Oyama ◽  
Bei Xu ◽  
Chao-Ling Yang ◽  
...  

In the present study, we investigated the activity of the thiazide-sensitive NCC (Na+–Cl− co-transporter) in experimental metabolic syndrome and the role of insulin in NCC activation. Renal responses to the NCC inhibitor HCTZ (hydrochlorothiazide), as a measure of NCC activity in vivo, were studied in 12-week-old ZO (Zucker obese) rats, a model of the metabolic syndrome, and in ZL (Zucker lean) control animals, together with renal NCC expression and molecular markers of NCC activity, such as localization and phosphorylation. Effects of insulin were studied further in mammalian cell lines with inducible and endogenous expression of this molecule. ZO rats displayed marked hyperinsulinaemia, but no differences in plasma aldosterone, compared with ZL rats. In ZO rats, natriuretic and diuretic responses to NCC inhibition with HCTZ were enhanced compared with ZL rats, and were associated with a decrease in BP (blood pressure). ZO rats displayed enhanced Thr53 NCC phosphorylation and predominant membrane localization of both total and phosphorylated NCC, together with a different profile in expression of SPAK (Ste20-related proline/alanine-rich kinase) isoforms, and lower expression of WNK4. In vitro, insulin induced NCC phosphorylation, which was blocked by a PI3K (phosphoinositide 3-kinase) inhibitor. Insulin-induced reduction in WNK4 expression was also observed, but delayed compared with the time course of NCC phosphorylation. In summary, we report increased NCC activity in hyperinsulinaemic rodents in conjunction with the SPAK expression profile consistent with NCC activation and reduced WNK4, as well as an ability of insulin to induce NCC stimulatory phosphorylation in vitro. Together, these findings indicate that hyperinsulinaemia is an important driving force of NCC activity in the metabolic syndrome with possible consequences for BP regulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
C. Mannelli ◽  
F. Ietta ◽  
C. Carotenuto ◽  
R. Romagnoli ◽  
A. Z. Szostek ◽  
...  

A proper fetomaternal immune-endocrine cross-talk in pregnancy is fundamental for reproductive success. This might be unbalanced by exposure to environmental chemicals, such as bisphenol A (BPA). As fetoplacental contamination with BPA originates from the maternal compartment, this study investigated the role of the endometrium in BPA effects on the placenta. To this end,in vitrodecidualized stromal cells were exposed to BPA 1 nM, and their conditioned medium (diluted 1 : 2) was used on chorionic villous explants from human placenta. Parallel cultures of placental explants were directly exposed to 0.5 nM BPA while, control cultures were exposed to the vehicle (EtOH 0.1%). After 24–48 h, culture medium from BPA-treated and control cultures was assayed for concentration of hormone human Chorionic Gonadotropin (β-hCG) and cytokine Macrophage Migration Inhibitory Factor (MIF). The results showed that direct exposure to BPA stimulated the release of both MIF andβ-hCG. These effects were abolished/diminished in placental cultures exposed to endometrial cell-conditioned medium. GM-MS analysis revealed that endometrial cells retain BPA, thus reducing the availability of this chemical for the placenta. The data obtained highlight the importance ofin vitromodels including the maternal component in reproducing the effects of environmental chemicals on human fetus/placenta.


2020 ◽  
Vol 6 (13) ◽  
pp. eaaz7130 ◽  
Author(s):  
V. Le Maout ◽  
K. Alessandri ◽  
B. Gurchenkov ◽  
H. Bertin ◽  
P. Nassoy ◽  
...  

Characterization of tumor growth dynamics is of major importance for cancer understanding. By contrast with phenomenological approaches, mechanistic modeling can facilitate disclosing underlying tumor mechanisms and lead to identification of physical factors affecting proliferation and invasive behavior. Current mathematical models are often formulated at the tissue or organ scale with the scope of a direct clinical usefulness. Consequently, these approaches remain empirical and do not allow gaining insight into the tumor properties at the scale of small cell aggregates. Here, experimental and numerical studies of the dynamics of tumor aggregates are performed to propose a physics-based mathematical model as a general framework to investigate tumor microenvironment. The quantitative data extracted from the cellular capsule technology microfluidic experiments allow a thorough quantitative comparison with in silico experiments. This dual approach demonstrates the relative impact of oxygen and external mechanical forces during the time course of tumor model progression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alonso Zavafer ◽  
Ievgeniia Iermak ◽  
Mun Hon Cheah ◽  
Wah Soon Chow

AbstractThe quenching of chlorophyll fluorescence caused by photodamage of Photosystem II (qI) is a well recognized phenomenon, where the nature and physiological role of which are still debatable. Paradoxically, photodamage to the reaction centre of Photosystem II is supposed to be alleviated by excitation quenching mechanisms which manifest as fluorescence quenchers. Here we investigated the time course of PSII photodamage in vivo and in vitro and that of picosecond time-resolved chlorophyll fluorescence (quencher formation). Two long-lived fluorescence quenching processes during photodamage were observed and were formed at different speeds. The slow-developing quenching process exhibited a time course similar to that of the accumulation of photodamaged PSII, while the fast-developing process took place faster than the light-induced PSII damage. We attribute the slow process to the accumulation of photodamaged PSII and the fast process to an independent quenching mechanism that precedes PSII photodamage and that alleviates the inactivation of the PSII reaction centre.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 46-46
Author(s):  
Loic Ysebaert ◽  
Mary Poupot ◽  
Yovan Sanchez-Ruiz ◽  
Camille Laurent ◽  
Guy Laurent ◽  
...  

Abstract Abstract 46 Introduction: CLL cells interact with many accessory cells in an environment mimicking that of normal mature B cells. Role of antigen, cytokines, adhesion pathways are critical for many aspects in the disease course (proliferation/survival, migration or homing, drug resistance, and presumably relapse). Nurse-like cells (NLC) belong to a monocytic-derived, bystander population among CLL lymph node and spleen stromal cells. Aim: To investigate the nature, functions, and location of NLC within CLL microenvironment. Methods: Gene expression profiles (GEP) from in vitro expanded NLC from patients (n=10) were produced and compared to those from normal CD14+ monocytes, M1-polarized macrophages, M2-polarized macrophages and tumor-associated macrophages (produced in the lab or downloaded from GEO datasets). Principal Component Analysis was used to categorize these five populations of cells and in-house-built GSEA software was used for functional interpretation of their relevant gene lists. Protein expression patterns were validated with multi-analyte ELISArray kits, proteome profiler arrays, flow cytometry (FC) or immunohistochemistry (IHC). Results: New insights into the physiopathological role of NLC in CLL are suggested from five lines of evidence: 1/a Òmonocytic gene signatureÓ (i.e. a set of 549 genes) is shared by the NLC and the monocyte subtypes. The genes over-represented in NLC vs normal monocytes pinpointed positive modulation of apoptotic cell clearance (scavenger, mannose and complement receptors, LXRalpha), lipid metabolism (Apolipoprotein E, PPAR signaling), extracellular matrix-receptor interactions (integrins, SPARC, Matrix MetalloProteinases) and actin cytoskeleton remodeling. 2/unsupervised clustering show that NLC represent an M2-skewed, TAM-like cell population. They down-regulate mRNA and proteins for classic M1 inflammatory markers (e.g. IL-1, IL-6, IL-12, COX2) while increase secretion of TGFbeta, IL-10, CCL17 and CCL22 soluble factors. 3/these and previously published observations suggest that B-CLL-to-NLC interactions may orchestrate immunosuppression in this disease. PBMCs from Òwatch and waitÓ CLL patients (all stage A/Rai 0, mutated IgVH, low risk cytogenetics profile) or healthy donors were stimulated with anti-CD3/CD28 beads + IL-2, either in standard RPMI+10% FCS or in conditioned medium (CM, after 14d CLL-NLC co-culture in vitro) and their proliferation/phenotype were compared after 2 weeks. Significant expansion of T cells with Treg (CD4+CD25+FoxP3+) phenotype was observed only from CLL PBMCs grown in conditioned medium (mean % Treg: 2.85 vs 3.05 in CM for normal PBMCs, and 1.54 vs 15.9 in CM for CLL PBMCs, P< 0.05). 4/although NLC make immune synapses with live B-CLL, they do not phagocytose them. Over-expression of CD47 (ÒdonÕt eat meÓ signal) by B-CLL cells (mfi= 3490 vs 2581 on normal cells, P< 0.05, n=18) may provide them with a protective signal against NLC. 5/from our GEP, flow cytometric and IHC analyses, we propose CD163 (classic M2 marker) as a reliable tool to identify NLC in vivo. Although in vitro, CLL cells can pervert healthy donor monocytes into NLC, only CLL-derived NLC are truly CD14+ CD163+. In vivo, CD163 staining reveals putative NLC in CLL lymph nodes(LN)/spleen sections but not in bone marrow. In LN from all patients, NLC reside in the subcapsular areas and line vessel structures, suggesting a role in CLL cells trafficking. Most interestingly, NLC infiltrate pseudofollicles structures only in a subset of cases. We will present updated IHC and clinical presentation correlation studies. Conclusions: Our results suggest that the role of NLC in CLL might be broader than initially thought. Beside of nursing and conferring drug resistance, NLC may also be crucial in the setting of immunosuppression, of CLL cells recruitment, and should thus be considered as therapeutic targets. Disclosures: Off Label Use: GA101 is not currently approved for CLL treatment.


1993 ◽  
Author(s):  
Rachel Nechushtai ◽  
Parag Chitnis

The major goal of the proposed research was to study the role of a 70-kDa heat shock cognate protein from chloroplasts (ct-HSP70) in the assembly of chlorophyll-protein complexes. The latters are mostly important in allowing photosynthesis to occur. Photosynthesis is at the heart of crop productivity and the knowledge of the biogenesis of the photosynthetic apparatus is essential to manipulate the efficiency of photosynthesis. The characterization of the function of the ct-HSP70 was planned to be studied in vitro by assaying its capability to physically interact with the thylakoid proteins and to assist their assembly into thylakoid membranes. We planned to identify regions in the light-harvesting complex protein (LHCP) that interact with the ct-HSP70 and characterize the interaction between them. We also intended to isolate cDNA clones encoding ct-HSP70, sequence them, express one of them in E. coli and use the purified protein for functional assays. The research in this BARD proposal aimed at providing insights and aid in understanding the mechanism by which plants may respond to the heat stress. Since plants often experience increased temperatures.


Author(s):  
Ismail Hadisoebroto Dilogo ◽  
Jessica Fiolin

Background: The therapeutic value of mesenchymal stem cells (MSCs) in tissue engineering and regenerative medicine is attributable in part to paracrine pathways triggered by several secreted factors secreted into culture media. The secreted factor here is known as the conditioned medium (CM) or secretome. Objectives: This review is aimed to investigate and summarise the in-vitro, pre-clinical in-vivo studies regarding the role of CM-MSC in bone regeneration from 2007 until 2018 Data Sources: A systematic literature search on PubMed, MEDLINE, OVID, Scopus and Cochrane library was carried out by using search terms: Secretome, conditioned medium, mesenchymal stem cell, bone healing, osteogenic, osteogenesis. Methods: A total of 611 articles were reviewed. Ten articles were identified as relevant for this systematic literature review. Results: Three tables of studies were constructed for in vitro studies and in-vivo studies. Conclusion: All of the included in-vitro studies and in-vivo studies have shown a promoting effect of bone regeneration at various stages. Although there are no clinical studies regarding the use of CM-MSC in the human bone regeneration that have been conducted, transplantation of secretome has shown a promising result in the acceleration of bone healing process.


2019 ◽  
Author(s):  
Yang Song ◽  
Ming Yang ◽  
Jianhong Zhang ◽  
Yan Sun ◽  
Ye Tao ◽  
...  

Abstract Background. Cytokines play important roles in development and prognosis of laryngeal cancer (LC). Interleukin-17 (IL-17) from a distinct subset of CD4 + T-cells may significantly induce cancer-elicited inflammation to prevent cancer cells from immune surveillance. Methods. The expression levels of IL-17 were examined among 60 patients with LC. Immunofluorescence co-localization experiments were performed to verify the localization of IL-17 and FAS/FASL in Hep-2 and Tu212 cells. IL-17 was silenced for expression in LC cell lines by siRNA techniques for determination of the role of IL-17 in LC. Results. In our LC patients, cytokines were dysregulated in LC tissues compared with normal tissues. We found that IL-17 was overexpressed in a cohort of 60 LC tumors paired with non-tumor tissues. Moreover, high IL-17 expression was significantly associated with advanced T category, late clinical stage, differentiation, lymph node metastasis, and disease recurrence. In addition, the time-course expression of FAS and FASL was observed after stimulation and treatment with IL-17 stimulator. Finally, in vitro experiments demonstrated that IL-17 functioned as an oncogene by inhibiting the apoptosis of LC cells via the PI3K/AKT/FAS/FASL pathways. Conclusions. Taken together, our findings for the first time demonstrate the role of IL-17 as a tumor promoter and a pro-metastatic factor in LC, indicating that IL-17 may have an oncogenic role and serve as a potential prognostic biomarker and therapeutic target in LC.


2021 ◽  
Author(s):  
William C Carlquist ◽  
Eric N Cytrynbaum

The patterns formed both in vivo and in vitro by the Min protein system have attracted much interest because of the complexity of their dynamic interactions given the apparent simplicity of the component parts. Despite both the experimental and theoretical attention paid to this system, the details of the biochemical interactions of MinD and MinE, the proteins responsible for the patterning, are still unclear. For example, no model consistent with the known biochemistry has yet accounted for the observed dual role of MinE in the membrane stability of MinD. Until now, a statistical comparison of models to the time course of Min protein concentrations on the membrane has not been carried out. Such an approach is a powerful way to test existing and novel models that are difficult to test using a purely experimental approach. Here, we extract time series from previously published fluorescence microscopy time lapse images of in vitro experiments and fit two previously described and one novel mathematical model to the data. We find that the novel model, which we call the Asymmetric Activation with Bridged Stability Model, fits the time-course data best. It is also consistent with known biochemistry and explains the dual MinE role via MinE-dependent membrane stability that transitions under the influence of rising MinE to membrane instability with positive feedback. Our results reveal a more complex network of interactions between MinD and MinE underlying Min-system dynamics than previously considered.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Shinichiro Nishimi ◽  
Takeo Isozaki ◽  
Kuninobu Wakabayashi ◽  
Hiroko Takeuchi ◽  
Tsuyoshi Kasama

A disintegrin and metalloprotease 15 (ADAM15) is involved in several malignancies. In this study, we investigated the role of ADAM15 in rheumatoid arthritis (RA) angiogenesis. Soluble ADAM15 (s-ADAM15) in serum from RA and normal (NL) subjects was measured using ELISA. To determine membrane-anchored ADAM15 (ADAM15) expression in RA synovial tissues, immunohistochemistry was performed. To examine the role of ADAM15 in angiogenesis, we performed in vitro Matrigel assays and monocyte adhesion assays using human umbilical vein endothelial cells (HUVECs) transfected with ADAM15 siRNA. Finally, to investigate whether angiogenic mediators were affected by ADAM15, cytokines in ADAM15 siRNA-transfected HUVEC-conditioned medium were measured. ADAM15 was significantly higher in RA serum than in NL serum. ADAM15 was also expressed on RAST endothelial cells. ADAM15 siRNA-treated HUVECs had decreased EC tube formation in response to RA synovial fluids compared with non-treated HUVECs. The adhesion index of ADAM15 siRNA-transfected HUVECs was significantly lower than the adhesion index of control siRNA-transfected HUVECs. ENA-78/CXCL5 and ICAM-1 were decreased in tumor necrosis factor (TNF)-α-stimulated ADAM15 siRNA-transfected HUVEC-conditioned medium compared with TNF-α-stimulated control siRNA-transfected HUVEC-conditioned medium. These data show that ADAM15 plays a role in RA angiogenesis, suggesting that ADAM15 might be a potential target in inflammatory diseases such as RA.


Sign in / Sign up

Export Citation Format

Share Document