Anti-Myeloma Activity of Selective PI-3K/PDK/mTOR Inhibitor BEZ235.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1185-1185 ◽  
Author(s):  
Douglas W. McMillin ◽  
Joseph Negri ◽  
Jake Delmore ◽  
Patrick Hayden ◽  
Nicholas Mitsiades ◽  
...  

Abstract Context: The PI3K-Akt-mTOR pathway has been a promising target for the treatment of multiple myeloma (MM). Major cytokine/growth factor receptor cascades (e.g. IGF-1/IGF-1R or IL-6/IL-6R) mediate, at least in part, their proliferative, anti-apoptotic or drug resistance effects through PI3K-Akt-mTOR activation and their downstream effectors. Therefore blocking this signaling pathway at one, or preferably more, of its molecular levels is considered to have promising therapeutic potential for MM. The small molecular mass compound NVP-BEZ235 (Novartis Pharma, Basel Switzerland) allows a multi-targeted, yet selective, inhibition of the PI-3K/Akt/mTOR signaling axis at the level of PI-3K and mTOR and was tested in our pre-clinical MM models. Methods/Results: A panel of human MM cell lines was tested for their in vitro response to NVP-BEZ235 using MTT colorimetric survival assays. All MM cell lines tested exhibited dose- and time-dependent decrease of their viability upon exposure to NVP-BEZ235 (IC50= 25–800 nM for 24–48hrs), without evidence of potential cross-resistance between conventional or novel anti-MM agents and NVP-BEZ235. Indeed, MM cells highly sensitive (IC50 <25 nM) to NVP-BEZ235 (e.g. MM.1S, MM.1R, Dox40 and KMS-12-PE) included both lines known to be sensitive as well as others which are resistant to dexamethasone, cytotoxic chemotherapy, thalidomide and/or its immunomodulatory derivatives (IMIDs). A longitudinal assessment of viability of MM-1S and OPM-2 MM cells during a 48-hr incubation with pharmacologically relevant concentrations of NVP-BEZ235 (25– 400nM) showed rapid commitment to and induction of MM cell death. This result, coupled with the observation that normal donor peripheral blood mononuclear cells (PBMCs) were less sensitive (IC50 >800 nM) than all MM cell lines tested, suggest that this compound exhibits a rapid and tumor-selective effect at clinically relevant conditions. This observation is further supported by our preliminary in vivo studies which suggest anti-MM activity of the drug in a model of diffuse MM bone lesions in SCID/NOD mice. Optimization of dosing and schedule to improve overall survival of NVP-BEZ235 treated mice is ongoing. To provide a more comprehensive framework for possible clinical applications of NVP-BEZ235 for MM treatment, we evaluated a series of combinations of this agent with conventional (e.g. dexamethasone, doxorubicin) and novel (e.g. bortezomib, immunodulatory thalidomide derivatives) anti-MM agents. Given the very potent single-agent activity of NVP-BEZ235 at even low nM concentrations, formal statistical documentation of synergy was not observed, but encouragingly no evidence of antagonism with any of these anti-MM agents was observed, indicating that combinations of NVP-BEZ235 with the aforementioned anti-MM agents can be feasible in clinical settings. Conclusion: The dual PI3K/mTOR inhibitor NVP-BEZ235 induces MM cell killing at sub-μM concentrations, with significantly higher sensitivity of MM cells compared to normal tissues, suggesting that this kinase inhibitor merits further consideration for possible testing as treatment option for MM patients. Further in vitro and in vivo studies are ongoing to further support the translation of these observations to clinical trials in MM.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3017-3017
Author(s):  
Chiara Tarantelli ◽  
Eugenio Gaudio ◽  
Petra Hillmann ◽  
Filippo Spriano ◽  
Ivo Kwee ◽  
...  

Abstract Background. The PI3K/AKT/mTOR pathway is an important therapeutic target in lymphomas. PQR309 is a dual PI3K/mTOR inhibitor that has shown in vitroanti-lymphoma activity (Tarantelli et al, ASH2015) and is in phase 2 trial (NCT02249429, , NCT02723877, NCT02669511). PQR620 is a novel mTORC1/2 inhibitor that has shown preclinical activity in solid tumor models (Beaufils et al, AACR 2016). Here, we present the in vitro and in vivo anti-lymphoma activity of PQR620 as single agent and also the in vivo results of PQR620 or PQR309 containing combinations with the BCL2 inhibitor venetoclax. Materials and Methods. The drug concentration causing 50% inhibition of cell proliferation (IC50) was obtained in lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), no.=26; mantle cell lymphoma (MCL), no.=8; anaplastic large T-cell lymphoma, no.=5; others, no=5] exposed to increasing doses of PQR620 for 72h using a Tecan D300e Digital Dispenser on 384well plates. For in vivo experiments, NOD-Scid (NOD.CB17-Prkdcscid/J) mice were subcutaneously inoculated with 10 x106 (RIVA) or with 5 x106(SU-DHL-6) cells. Results. PQR620 had a median IC50 of 250 nM (95%CI, 200-269 nM) when tested on 44 lymphoma cell lines. Activity was higher in B cell (no.=36) than in T cell tumors (no.=8) (median IC50s: 250 nM vs 450 nM; P=0.002). At 72h, anti-tumor activityof PQR620 was mostly cytostatic and apoptosis induction was seen only in 6/44 cell lines (13%), Sensitivity to PQR620 or apoptosis induction did not differ between DLBCL and MCL, and they were not affected by the DLBCL cell of origin, by TP53 status or by the presence of MYC or BCL2 translocations. The activity of PQR620 as single agent underwent in vivo evaluation in two DLBCL models, the germinal center B cell type DLBCL (GCB-DLBCL) SU-DHL-6 and the acivated B cell-like DLBCL (ABC-DLBCL) RIVA. Treatments with PQR620 (100mg/kg dose per day, Qdx7/w) started with 100-150 mm3 tumors and were carried for 14 (SU-DHL-6) or 21 days (RIVA). In both models, PQR620 determined a 2-fold decrease of the tumor volumes in comparison with control, with significant differences in both SU-DHL-6 (D7, D9, D11, D14; P < 0.005) and RIVA (D14, D16, D19, D21; P < 0.005). Based on the previously reported synergy between the dual PI3K/mTOR inhibitor PQR309 and venetoclax (Tarantelli et al, ASH 2015), we evaluated the combination of the PQR620 or PQR309 with the BCL2 inhibitor venetoclax (100 mg/kg, Qdx7/w) in the SU-DHL-6 model. Both the venetoclax combination with the dual PI3K/mTOR inhibitor and the venetoclax combination with mTORC1/2 inhibitor were superior to the compounds given as single agents, leading to the eradication of the xenografts. The combination of PQR620 with venetoclax showed highly significant differences either versus control or single agents during all days of the experiment (D4, D7, D9, D11, D14; P < 0.001). Similarly, the combination of PQR309 with venetoclax showed highly significant differences versus venetoclax (D7, D9, D11, D14; P < 0.001) and PQR309 (D7, D9, D11; P < 0.005) alone. Conclusions. The novel mTORC1/2 inhibitor PQR620 had in vitro and in vivo anti-lymphoma activity as single agent. In vivo experiments showed that both PQR620 and the dual PI3K/mTOR inhibitor PQR309 can strongly benefit from the combination with the BCL2 inhibitor venetoclax. Disclosures Hillmann: PIQUR Therapeutics AG: Employment. Fabbro:PIQUR Therapeutics AG: Employment. Cmiljanovic:PIQUR Therapeutics AG: Employment, Membership on an entity's Board of Directors or advisory committees.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e15070-e15070
Author(s):  
Luise Maute ◽  
Johannes Wicht ◽  
Martin Zoernig ◽  
Manuel Niederhagen ◽  
Lothar Bergmann

e15070 Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant tumours and is still associated with a very poor prognosis. Therefore new treatment strategies are needed. The PI3K/AKT and mTOR signaling pathways are frequently dysregulated in PDAC. Thus we investigated the effects of NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, alone or in combination with gemcitabine first in vitro and after promising results also in vivo. Methods: We examined the effect of gemcitabine and NVP-BEZ235 (kindly provided by Novartis Pharma) on cell viability as single agents and in combination with sequential administrations in the four human pancreatic cancer cell lines MiaPaCa-2, Panc-1, AsPC-1 and BxPC-3. For in vivo experiments we used NOD SCID Mice, which were injected with BxPc3 into the right flank. Treatments consisted of Gemcitabine alone, NVP-BEZ235 alone, simultaneous application of both, first application of Gemcitabine followed by NVP-BEZ235 and NVP-BEZ235 followed by Gemcitabine. Results: Simultaneous incubation of gemcitabine and NVP-BEZ235 affected the PDAC cell lines significantly better than the single agent administration. But most effective was a sequential administration of gemcitabine followed by NVP-BEZ235. In vivo Gemcitabine and NVP-BEZ235 as single agents showed a slightly reduced tumor growth and the treatment in the sequence NVP-BEZ235 first, followed by Gemcitabine resulted in only a minimal reduction of tumor growth. The most effective results were obtained by simultaneous and even better in the sequence of Gemcitabine followed by NVP-BEZ235, respectively. Conclusions: The combination of gemcitabine with the dual PI3k/mTOR inhibitor NVP-BEZ235 enhanced the efficacy of PDAC treatment via down-regulation of the DDR related gene Survivin in vitro. This combination seems to be significantly more effective than single agent use in vitro and also in vivo. Furthermore we demonstrated that the sequence of administration of these agents could be a relevant issue. These promising results might offer a new and effective option for the treatment of pancreatic cancer in the future.


2021 ◽  
Vol 22 (14) ◽  
pp. 7337
Author(s):  
Ekaterina Pashkina ◽  
Alina Aktanova ◽  
Irina Mirzaeva ◽  
Ekaterina Kovalenko ◽  
Irina Andrienko ◽  
...  

Cucurbit[7]uril (CB[7]) is a molecular container that may form host–guest complexes with platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our studies of the effect of CB[7]–oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time, we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although the stable CB[7]–carboplatin complex was not formed, the presence of cucurbit[7]uril affected the biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but, at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7] shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3487
Author(s):  
Yu-Ling Lu ◽  
Ming-Hsien Wu ◽  
Yi-Yin Lee ◽  
Ting-Chao Chou ◽  
Richard J. Wong ◽  
...  

Differentiated thyroid cancer (DTC) patients are usually known for their excellent prognoses. However, some patients with DTC develop refractory disease and require novel therapies with different therapeutic mechanisms. Targeting Wee1 with adavosertib has emerged as a novel strategy for cancer therapy. We determined the effects of adavosertib in four DTC cell lines. Adavosertib induces cell growth inhibition in a dose-dependent fashion. Cell cycle analyses revealed that cells were accumulated in the G2/M phase and apoptosis was induced by adavosertib in the four DTC tumor cell lines. The sensitivity of adavosertib correlated with baseline Wee1 expression. In vivo studies showed that adavosertib significantly inhibited the xenograft growth of papillary and follicular thyroid cancer tumor models. Adavosertib therapy, combined with dabrafenib and trametinib, had strong synergism in vitro, and revealed robust tumor growth suppression in vivo in a xenograft model of papillary thyroid cancer harboring mutant BRAFV600E, without appreciable toxicity. Furthermore, combination of adavosertib with lenvatinib was more effective than either agent alone in a xenograft model of follicular thyroid cancer. These results show that adavosertib has the potential in treating DTC.


ESMO Open ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. e000387 ◽  
Author(s):  
Chiara Tarantelli ◽  
Elena Bernasconi ◽  
Eugenio Gaudio ◽  
Luciano Cascione ◽  
Valentina Restelli ◽  
...  

BackgroundThe outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials.Materials and methodsThe activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines.ResultsBirabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines.ConclusionOur data provide the rationale to evaluate birabresib in patients affected by MCL.


2018 ◽  
Vol 48 (6) ◽  
pp. 2286-2301 ◽  
Author(s):  
Dijiong  Wu ◽  
Keding Shao ◽  
Qihao Zhou ◽  
Jie Sun ◽  
Ziqi Wang ◽  
...  

Background/Aims: Although the cure rate of acute promyelocytic leukemia (APL) has exceeded 90%, the relapse/refractory APL that resistant to all-trans retinoic acid (ATRA) or ATO was still serious concern. Matrine (MAT) could improve the differentiation ability of ATRA-resistant APL cells. This study aimed to explore how the APL-specific fusion protein was degraded in ATRA-resistant APL with the application of MAT and ATRA. Methods: ATRA-sensitive (NB4) and ATRA-resistant (NB4-LR1) cell lines were used. Nitroblue tetrazolium reduction assay and flow cytometry were used to detect the differentiation ability. The activity of ubiquitin-proteasome and autophagy-mediated pathways in both cells treated with ATRA with or without MAT were compared in protein and mRNA level (Western blot analysis, qRT-PCR), the Fluorescent substrate Suc-LLVY-AMC detection was used to detect the activity of proteasome, and electron microscope for observing autophagosome. MG 132(proteasome inhibitor), rapamycin (autophagy activator), hydroxychloroquine (lysosomal inhibitor) and STI571 [retinoic acid receptor alpha (RARα) ubiquitin stabilizer] were used as positive controls. The effect of MAT was observed in vivo using xenografts. Results: MAT improved the sensitivity of NB4-LR1cells to ATRA treatment, which was consistent with the expression of PML-RARα fusion protein. MAT promoted the ubiquitylation level in NB4-LR1. MG 132 induced the decrease in RARα in both cell lines, and hampered the differentiation of NB4 cells. MAT also promoted the autophagy in NB4-LR1 cells, with an increase in microtubule-associated protein 1 light chain3 (LC3)-II and LC3-II/LC3-I ratio and exhaustion of P62. The expression of LC3II increased significantly in the MAT and ATRA + MAT groups in combination with lysosomal inhibitors. A similar phenomenon was observed in mouse xenografts. MAT induced apoptosis and differentiation. Conclusions: Autophagy and ubiquitin-mediated proteolytic degradation of PML/RARα fusion protein are crucial in MAT-induced differentiation sensitivity recovery of NB4-LR1 cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-45
Author(s):  
Sushanth Gouni ◽  
Paolo Strati ◽  
Jason Westin ◽  
Loretta J. Nastoupil ◽  
Raphael E Steiner ◽  
...  

Background: Pre-clinical studies show that statins may improve the efficacy of chemoimmunotherapy in patients with DLBCL, through interference with cell membrane-initiated signaling pathways. Clinical retrospective studies, however, yield conflicting data, due to heterogeneous properties of statins, including potency and hydrophilicity. Methods: This is a retrospective analysis of patients with previously untreated, advanced stage DLBCL, non-double hit, treated with frontline R-CHOP between 01/01/2000 and 09/01/2019 (data cut-off 04/15/2020) at MD Anderson Cancer Center, and for whom data regarding statin use at time of initiation of treatment were available. Lugano 2014 response criteria were applied retrospectively for response assessment. Cellular cholesterol levels were analyzed in 6 DLBCL cell lines using an Amplex red fluorometric assay. A doxorubicin (DXR)-resistant cell line was generated exposing SUDHL4 cells to escalating doses of DXR; a DXR-resistant DLBCL patient-derived xenograft (PDX) model was established through serial transplantation and exposure to DXR. Results: 271 patients were included in the analysis, 182 (67%) were older than 60 years, 134 (49%) were male, 212 (72%) had stage IV disease, and 217 (80%) had an IPI score &gt; 3; upon pathological review, 38 (36%) cases were non-GCB type, and 18 (28%) were double-expressors; 214 (79%) were able to complete all planned 6 cycles of RCHOP. Seventy-nine (29%) patients received statins at time of initiation of chemoimmunotherapy: 15 patients received low potency statin, 51 medium and 13 high; 18 patients received hydrophilic statins and 61 lipophilic. Patients receiving statins were significantly older as compared to patients who did not (p&lt;0.001); no other significant difference in baseline characteristics was observed when comparing the 2 groups. Overall, 265 out of 271 patients were evaluable for response, as 6 stopped treatment because of toxicity before first response assessment. Among these, ORR was 95% (252/265) and CR rate was 62% (165/265). ORR rate was identical in patients who were treated with statin and those who did not (95% both, p=1). After a median follow-up of 77 months (95% CI, 70-84 months), 119 patients progressed/died, median PFS was not reached and 6-year PFS was 57%. 6-year PFS rate according to statin intensity was: 48% (low), 72% (medium), 57% (high). PFS. 6-year PFS rate was 64% for hydrophilic and 72% for lipophilic statins. Patients treated with statins had a trend for longer PFS (p=0.06), significantly longer for patients receiving medium potency statins (p=0.04). No significant difference in PFS was observed when comparing patients treated with lipophilic statins to all others (not reached vs 84 months, p=0.22). To confirm these clinical data, in-vitro and in-vivo studies were performed. Six cell lines were tested: 4 with high cholesterol content (SUDHL4, HBL1, HT, and U2932; 5.0-8.0 µg/mg protein), and 2 with low cholesterol content (DOHH2 and OCI-LY19; 1.5-2.0 µg/mg protein); the latter showed the highest sensitivity to DXR-mediated killing. The combination of lovastatin and DXR (10nM) was tested in all 4 cell lines with high cholesterol content, resulting in more cell death than either treatment alone. Lovastatin (at the nanomolar range) resensitized DXR-resistant SUDHL4 cells to DXR. Finally, in a DXR-resistant PDX model, the combination of lovastatin and DXR resulted in delayed tumor growth as compared to chemotherapy alone. Conclusions: Use of medium potency statins is associated with improved outcomes after frontline RCHOP in patients with DLBCL. This was further confirmed in functional in-vitro and in-vivo studies. Future interventional studies, aimed at improving outcomes in these patients using this novel combination, are warranted. Disclosures Westin: Amgen: Consultancy; 47: Research Funding; Kite: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Morphosys: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Curis: Consultancy, Research Funding; Astra Zeneca: Consultancy, Research Funding. Nastoupil:Gamida Cell: Honoraria; Merck: Research Funding; TG Therapeutics: Honoraria, Research Funding; Karus Therapeutics: Research Funding; Janssen: Honoraria, Research Funding; LAM Therapeutics: Research Funding; Novartis: Honoraria, Research Funding; Bayer: Honoraria; Celgene: Honoraria, Research Funding; Genentech, Inc.: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Gilead/KITE: Honoraria. Neelapu:Bristol-Myers Squibb: Other: personal fees, Research Funding; Merck: Other: personal fees, Research Funding; Kite, a Gilead Company: Other: personal fees, Research Funding; Pfizer: Other: personal fees; Celgene: Other: personal fees, Research Funding; Novartis: Other: personal fees; Karus Therapeutics: Research Funding; N/A: Other; Takeda Pharmaceuticals: Patents & Royalties; Acerta: Research Funding; Cellectis: Research Funding; Poseida: Research Funding; Precision Biosciences: Other: personal fees, Research Funding; Legend Biotech: Other; Adicet Bio: Other; Allogene Therapeutics: Other: personal fees, Research Funding; Cell Medica/Kuur: Other: personal fees; Calibr: Other; Incyte: Other: personal fees; Unum Therapeutics: Other, Research Funding. Landgraf:NCI/NIH: Research Funding. Vega:NCI: Research Funding.


Nanomedicine ◽  
2019 ◽  
Vol 14 (18) ◽  
pp. 2423-2440 ◽  
Author(s):  
Canyu Yang ◽  
Bing He ◽  
Qiang Zheng ◽  
Dakuan Wang ◽  
Mengmeng Qin ◽  
...  

Aim: We developed a polycaprolactone-based nanoparticle (NP) to encapsulate tryptanthrin derivative CY-1-4 and evaluated its antitumor efficacy. Materials & methods: CY-1-4 NPs were prepared and evaluated for their cytotoxicity and associated mechanisms, indoleamine 2,3-dioxygenase (IDO)-inhibitory ability, immunogenic cell death (ICD)-inducing ability and antitumor efficacy. Results: CY-1-4 NPs were 123 nm in size. In vitro experiments indicated that they could both induce ICD and inhibit IDO. In vivo studies indicated that a medium dose reduced 58% of the tumor burden in a B16-F10-bearing mouse model, decreased IDO expression in tumor tissues and regulated lymphocytes subsets in spleen and tumors. Conclusion: CY-1-4 is a potential antitumor candidate that could act as a single agent with combined functions of IDO inhibition and ICD induction.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1592
Author(s):  
Surendra R. Punganuru ◽  
Viswanath Arutla ◽  
Wei Zhao ◽  
Mehrdad Rajaei ◽  
Hemantkumar Deokar ◽  
...  

There is a desperate need for novel and efficacious chemotherapeutic strategies for human brain cancers. There are abundant molecular alterations along the p53 and MDM2 pathways in human glioma, which play critical roles in drug resistance. The present study was designed to evaluate the in vitro and in vivo antitumor activity of a novel brain-penetrating small molecule MDM2 degrader, termed SP-141. In a panel of nine human glioblastoma and medulloblastoma cell lines, SP-141, as a single agent, potently killed the brain tumor-derived cell lines with IC50 values ranging from 35.8 to 688.8 nM. Treatment with SP-141 resulted in diminished MDM2 and increased p53 and p21cip1 levels, G2/M cell cycle arrest, and marked apoptosis. In intracranial xenograft models of U87MG glioblastoma (wt p53) and DAOY medulloblastoma (mutant p53) expressing luciferase, treatment with SP-141 caused a significant 4- to 9-fold decrease in tumor growth in the absence of discernible toxicity. Further, combination treatment with a low dose of SP-141 (IC20) and temozolomide, a standard anti-glioma drug, led to synergistic cell killing (1.3- to 31-fold) in glioma cell lines, suggesting a novel means for overcoming temozolomide resistance. Considering that SP-141 can be taken up by the brain without the need for any special delivery, our results suggest that SP-141 should be further explored for the treatment of tumors of the central nervous system, regardless of the p53 status of the tumor.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii4-iii4
Author(s):  
A Bruning-Richardson ◽  
H Sanganee ◽  
S Barry ◽  
D Tams ◽  
T Brend ◽  
...  

Abstract BACKGROUND Targeting kinases as regulators of cellular processes that drive cancer progression is a promising approach to improve patient outcome in GBM management. The glycogen synthase kinase 3 (GSK-3) plays a role in cancer progression and is known for its pro-proliferative activity in gliomas. The anti-proliferative and cytotoxic effects of the GSK-3 inhibitor AZD2858 were assessed in relevant in vitro and in vivo glioma models to confirm GSK-3 as a suitable target for improved single agent or combination treatments. MATERIAL AND METHODS The immortalised cell line U251 and the patient derived cell lines GBM1 and GBM4 were used in in vitro studies including MTT, clonogenic survival, live cell imaging, immunofluorescence microscopy and flow cytometry to assess the cytotoxic and anti-proliferative effects of AZD2858. Observed anti-proliferative effects were investigated by microarray technology for the identification of target genes with known roles in cell proliferation. Clinical relevance of targeting GSK-3 with the inhibitor either for single agent or combination treatment strategies was determined by subcutaneous and orthotopic in vivo modelling. Whole mount mass spectroscopy was used to confirm drug penetration in orthotopic tumour models. RESULTS AZD2858 was cytotoxic at low micromolar concentrations and at sub-micromolar concentrations (0.01 - 1.0 μM) induced mitotic defects in all cell lines examined. Prolonged mitosis, centrosome disruption/duplication and cytokinetic failure leading to cell death featured prominently among the cell lines concomitant with an observed S-phase arrest. No cytotoxic or anti-proliferative effect was observed in normal human astrocytes. Analysis of the RNA microarray screen of AZD2858 treated glioma cells revealed the dysregulation of mitosis-associated genes including ASPM and PRC1, encoding proteins with known roles in cytokinesis. The anti-proliferative and cytotoxic effect of AZD2858 was also confirmed in both subcutaneous and orthotopic in vivo models. In addition, combination treatment with AZD2858 enhanced clinically relevant radiation doses leading to reduced tumour volume and improved survival in orthotopic in vivo models. CONCLUSION GSK-3 inhibition with the small molecule inhibitor AZD2858 led to cell death in glioma stem cells preventing normal centrosome function and promoting mitotic failure. Normal human astrocytes were not affected by treatment with the inhibitor at submicromolar concentrations. Drug penetration was observed alongside an enhanced effect of clinical radiotherapy doses in vivo. The reported aberrant centrosomal duplication may be a direct consequence of failed cytokinesis suggesting a role of GSK-3 in regulation of mitosis in glioma. GSK-3 is a promising target for combination treatment with radiation in GBM management and plays a role in mitosis-associated events in glioma biology.


Sign in / Sign up

Export Citation Format

Share Document