Adenoviral Vector-Mediated Transfer of the Indian Hedgehog Gene Modulates Lymphomyelopoiesis In Vivo.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2205-2205
Author(s):  
Masayoshi Kobune ◽  
Yutaka Kawano ◽  
Katsunori Sasaki ◽  
Rishu Takimoto ◽  
Junji Kato ◽  
...  

Abstract Indian hedgehog (Ihh) plays an essential role in angiogenesis, hematogenesis and epiphysis formation during embryogenesis. In the present study, we injected an adenoviral vector (Adv) carrying the mock-control (adv-control) or Ihh gene (Adv-Ihh) into SCID or BALB/c mice to evaluate the effects of lhh on the regulation of postnatal hematopoiesis in vivo. After the intravenous injection of Adv-Ihh, the expression of vector-derived Ihh mRNA was detected in the liver. Four weeks after administration of Adv-Ihh to SCID mice, we observed an increase in the number of c-Kit+ cells and clonogenic cells/105 mononuclear cells in the bone marrow as compared with adv-control administrated mice. Moreover, after administration of Adv-Ihh to BALB/c mice, the number of splenic B220+IgMlowCD23intCD21int B lymphocytes (Figure 1) and CD4+ T lymphocytes (Figure 2) was strongly increased. Furthermore, the number of thymic double negative (DN)2, DN3, CD8+ immature single positive and CD4+/CD8− cells was significantly elevated relative to the number in mice that received the control Adv vector. Our results suggest that enhanced signaling by Ihh can modulate the proliferation and differentiation of splenic B lymphocytes and thymic T lymphocytes during BM hematopoiesis in vivo. Thus, modulation of the Hh signaling pathway may provide a therapeutic strategy to stimulate lymphomyelopoiesis in vivo. Figure Figure Figure Figure

2005 ◽  
Vol 288 (3) ◽  
pp. R591-R599 ◽  
Author(s):  
Mitsuharu Okutsu ◽  
Kenji Ishii ◽  
Kai Jun Niu ◽  
Ryoichi Nagatomi

The aim of this study was to elucidate the mechanism responsible for lymphopenia after exercise. Seven young healthy men volunteered for this study. Peripheral blood mononuclear cells (PBMC) were cultured with cortisol and analyzed for C-X-C motif chemokine receptor 4 (CXCR4) expression by flow cytometry. To determine the effects of exercise, subjects performed exhaustive cycling exercise. PBMC were cultured with plasma obtained before and after the cycling exercise. Alternatively, PBMC obtained before and after exercise were cultured without plasma or glucocorticoid to examine whether PBMC were primed in vivo for CXCR4 expression. We analyzed cortisol- or plasma-treated PBMC to determine their ability to migrate through membrane filters in response to stromal cell-derived factor 1α/CXCL12. Cortisol dose- and time-dependently augmented CXCR4 expression on T lymphocytes, with <6 h of treatment sufficient to augment CXCR4 on T lymphocytes. Postexercise plasma also augmented CXCR4 expression. Cortisol or postexercise plasma treatment markedly enhanced migration of T lymphocytes toward CXCL12. Augmentation of CXCR4 on T lymphocytes by cortisol or plasma was effectively blocked by the glucocorticoid receptor antagonist RU-486. Thus exercise-elicited endogenous cortisol effectively augments CXCR4 expression on T lymphocytes, which may account for lymphopenia after exercise.


Stem Cells ◽  
2008 ◽  
Vol 26 (2) ◽  
pp. 534-542 ◽  
Author(s):  
Masayoshi Kobune ◽  
Junji Kato ◽  
Yutaka Kawano ◽  
Katsunori Sasaki ◽  
Hiroaki Uchida ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Zhenjian Xu ◽  
Junzhe Chen ◽  
Anping Xu

Abstract Background and Aims Our previous study found a new regulatory T cell subpopulation, CD4+CD126lowFoxp3+ regulatory T cells (CD4+CD126lowFoxp3+ Treg). This cell can maintain a stable immune regulatory function in the inflammatory state. Through in vivo and in vitro experiments, we have confirmed that CD4+CD126lowFoxp3+ Treg has an immunotherapeutic effect on T cell-mediated mouse models of autoimmune diseases such as colitis and collagen-induced arthritis (CIA). Further experimental studies showed that CD4+CD126lowFoxp3+ Treg could reduce the kidney injury caused by autoantibodies and prolong the survival time of lupus mice. However, the mechanism of CD4+CD126lowFoxp3+ Treg immunotherapy in lupus nephritis is not clear. The purpose of this study was to explore the mechanism of CD4+CD126lowFoxp3+ Treg immunotherapy in mice with lupus nephritis. Method In vitro experiments CD4+CD126lowFoxp3+ Treg or CD4+CD126lowFoxp3+ Treg pretreated with PD-1 inhibitor were co-cultured with T or B lymphocytes of lupus mice under different in vitro culture condition. The expression levels of Akt and mTOR of Treg in each group were measured under immunoinflammatory conditions. To observe the effects and differences of Treg groups on the activation, proliferation and differentiation of T or B cells and other immunomodulatory effects. In vivo experiments CD4+CD126lowFoxp3+ Treg (2 × 106/mouse) and CD4+CD126lowFoxp3+ Treg (2 × 106/mouse) pretreated with PD-1 inhibitor and PBS were injected into NZM2328 lupus mice, respectively. After cell injection, urine protein was measured weekly. Autoantibody expression in lupus mice was measured every two weeks. The effects of Treg on the proliferation and differentiation of T/B cells in lupus mice were observed. The therapeutic effects of Treg on lupus mice were observed. Results Compared with CD4+CD126lowFoxp3+ Treg, the expression of Akt and mTOR increases in PD-1 inhibitors pretreatment cells. The activation, proliferation and differentiation functions of T or B lymphocytes of lupus mice were significantly weakened by immunosuppression of PD-1 inhibitors pretreated Treg in vitro, indicating that CD4+CD126lowFoxp3+ Treg may inhibit Akt-mTOR signaling pathway through PD-1 in in vitro. Compared with CD4+CD126lowFoxp3+ Treg, the activation, proliferation and differentiation functions of T or B lymphocytes of lupus mice were significantly weakened by immunosuppression of PD-1 inhibitors pretreated Treg in vivo. And its therapeutic effect on lupus mice was ineffective, indicating that CD4+CD126lowFoxp3+ Treg may inhibit Akt-MTOR signaling pathway through PD-1 in vivo. Conclusion CD4+CD126lowFoxp3+ Treg may inhibit the Akt-mTOR signaling pathway by expressing PD-1, and maintain stable immunomodulatory function in the inflammatory state, thus producing immunotherapeutic effect on lupus nephritis mice.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1089 ◽  
Author(s):  
Jean Christopher Chamcheu ◽  
Stephane Esnault ◽  
Vaqar M. Adhami ◽  
Andrea L. Noll ◽  
Sergette Banang-Mbeumi ◽  
...  

Psoriasis is a chronic immune-mediated skin disease that involves the interaction of immune and skin cells, and is characterized by cytokine-driven epidermal hyperplasia, deviant differentiation, inflammation, and angiogenesis. Because the available treatments for psoriasis have significant limitations, dietary products are potential natural sources of therapeutic molecules, which can repair the molecular defects associated with psoriasis and could possibly be developed for its management. Fisetin (3,7,3′,4′-tetrahydroxyflavone), a phytochemical naturally found in pigmented fruits and vegetables, has demonstrated proapoptotic and antioxidant effects in several malignancies. This study utilized biochemical, cellular, pharmacological, and tissue engineering tools to characterize the effects of fisetin on normal human epidermal keratinocytes (NHEKs), peripheral blood mononuclear cells (PBMC), and CD4+ T lymphocytes in 2D and 3D psoriasis-like disease models. Fisetin treatment of NHEKs dose- and time-dependently induced differentiation and inhibited interleukin-22-induced proliferation, as well as activation of the PI3K/Akt/mTOR pathway. Fisetin treatment of TNF-α stimulated NHEKs also significantly inhibited the activation of p38 and JNK, but had enhanced effect on ERK1/2 (MAPK). In addition, fisetin treatment significantly decreased the secretion of Th1/Th-17 pro-inflammatory cytokines, particularly IFN-γ and IL-17A by 12-O-tetradecanolylphorbol 13-acetate (TPA)-stimulated NHEKs and anti-CD3/CD28-activated human PBMCs. Furthermore, we established the in vivo relevance of fisetin functions, using a 3D full-thickness human skin model of psoriasis (FTRHSP) that closely mimics in vivo human psoriatic skin lesions. Herein, fisetin significantly ameliorated psoriasis-like disease features, and decreased the production of IL-17 by CD4+ T lymphocytes co-cultured with FTRHSP. Collectively, our data identify the prodifferentiative, antiproliferative, and anti-inflammatory effects of fisetin, via modulation of the PI3K-Akt-mTOR and p38/JNK pathways and the production of cytokines in 2D and 3D human skin models of psoriasis. These results suggest that fisetin has a great potential to be developed as an effective and inexpensive agent for the treatment of psoriasis and other related inflammatory skin disorders.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517 ◽  
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

Abstract A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


Blood ◽  
1996 ◽  
Vol 88 (4) ◽  
pp. 1473-1478 ◽  
Author(s):  
N Yamamoto ◽  
VR Naraparaju ◽  
PJ Orchard

Generation of macrophage-activating factor requires a precursor protein, Gc protein (serum vitamin D3-binding protein), as well as participation of beta-galactosidase of inflammation-primed B lymphocytes and sialidase of T lymphocytes. The treatment of human peripheral blood mononuclear cells with an inflammatory lysophospholipid induced beta-galactosidase and sialidase activity of lymphocytes, leading to the generation of macrophage-activating factor and activation of monocytes/macrophages. However, lysophospholipid treatment of peripheral blood mononuclear cells from three infantile patients with osteopetrosis resulted in no significant activation of monocytes/macrophages. The lysophospholipid-inducible beta- galactosidase activity of B lymphocytes as well as that of the sialidase of T lymphocytes was found to be defective in these patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1733-1733
Author(s):  
Dianne Pulte ◽  
Marinus Johan Broekman ◽  
Joan Drosopoulos ◽  
Kim E. Olson ◽  
Naziba Islam ◽  
...  

Abstract CD39/NTPDase-1 is an ecto-ATP/ADPase expressed on leukocytes and endothelial cells. CD39 is the main control system for blood fluidity. CD39 on lymphocytes was first reported in 1991 by Kansas et al. However, studies of CD39 expression and activity on leukocytes have not been done. We characterized levels of CD39 expression and enzymatic activity on neutrophils (PMN), lymphocytes and lymphocyte subsets. Since inflammatory responses occur in arterial vascular disease, we also examined expression of CD39 on naive versus activated and memory lymphocytes. Lymphocytes were isolated by a histopaque procedure, and PMN by dextran gradient. B-lymphocytes were isolated using the RosetteSep B-cell kit. All cell types were confirmed to have purities of >90%. CD39 activity was assayed via our radio-thin-layer chromatographic system. CD39 expression was measured on leukocytes via FACS. PMN, monocytes, and lymphocytes were identified by their forward and side-scatter characteristics. Subsets of lymphocytes were examined via double staining for CD39 and antibodies against specific sub-types. CD39 localized to the surface of greater than 95% of neutrophils, monocytes, and B-lymphocytes. It was also present on a minority (~8%) of T-lymphocytes with no difference in frequency of expression between CD4+ and CD8+ cells. Geometric mean (GM) expression of CD39 per cell was greatest in B-lymphocytes and monocytes, lower in CD4+ cells, and lowest in CD8+ cells and PMN. Interestingly, incubation of T- lymphocytes with PHA up-regulated CD39 in CD8+ cells both in terms of number of cells expressing and GM, with expression rising to 65%. The GM increased 4-fold after 6d of stimulation with PHA. A similar but less dramatic increase was seen with LPS. This is the first time we have accomplished up-regulation of CD39 expression and enzymatic activity. Radio-TLC measurement of nucleotidase activity showed B-lymphocytes>PMN>T-lymphocytes. B-lymphocyte ADPase and ATPase activities (in pmol/min/50K cells) were 75 and 43, respectively. PMN displayed 39 (ADPase) and 22 (ATPase), while T-lymphocytes had enzymatic activity of 16 and 11.5, respectively. ADPase:ATPase ratios were similar for B-lymphocytes and PMN, but lower for T-lymphocytes (1.8 for B-lymphocytes and PMN, vs 1.45 for T-lymphocytes, p=0.03). Lymphocytes stimulated with PHA demonstrated an increase in enzyme activity of 10–20X baseline that peaked at 7–10d. ADPase:ATPase ratio was unchanged. FACS measurement showed that CD39+ lymphocytes were more often activated than CD39− lymphocytes in both CD3+ (p=0.06) and CD4+ (p=0.02) subgroups. Preliminary experiments indicated that >85% of CD39+ T-lymphocytes are CD45RO+. Importantly, this suggests that CD39 is expressed primarily on activated or memory cells in the T-lymphocyte population. Thus, CD39 is expressed on a broad variety of leukocytes. T-lymphocyte expression can be induced by stimulation with mitogens. Moreover, CD39 is present primarily on CD45RO+ T-lymphocytes. We conclude that CD39 expression can be induced by activation of the immune system. The up-regulation of CD39 on activated and memory T-lymphocytes may be a compensatory mechanism for protection from thrombosis as a consequence of inflammation. It may serve as a mechanism for metabolizing extracellular ATP and therefore decreasing the inflammatory stimulus. Abnormalities in CD39 may result in decreased nucleotidase activity and increased vulnerability to thrombosis as a consequence of inflammation.


2003 ◽  
Vol 40 (4) ◽  
pp. 395-404 ◽  
Author(s):  
J. Sarradell ◽  
M. Andrada ◽  
A. S. Ramírez ◽  
A. Fernández ◽  
J. C. Gómez-Villamandos ◽  
...  

Porcine enzootic pneumonia (PEN), caused by Mycoplasma hyopneumoniae (Mh), has been described in pigs in all geographic areas. The disease is characterized by high morbidity and low mortality rates in intensive swine production systems. A morphologic and immunohistochemical study was done to determine the cellular populations present in lung parenchyma of infected pigs, with special attention to the bronchus-associated lymphoid tissue (BALT). Polyclonal and monoclonal antibodies were used for the detection of antigens of Mh, T lymphocytes (CD3+, CD4+, and CD8+), IgG+ or IgA+ lymphocytes, and cells containing lysozyme, S-100 protein, major histocompatibility complex class II antigen or myeloid-histiocyte antigen. Findings in lung tissues associated with Mh infection were catarrhal bronchointerstitial pneumonia, with infiltration of inflammatory cells in the lamina propria of bronchi and bronchioles and alveolar septa. Hyperplasia of mononuclear cells in the BALT areas was the most significant histologic change. The BALT showed a high morphologic and cellular organization. Macrophages and B lymphocytes were the main cellular components of germinal centers. T lymphocytes were primarily located in perifollicular areas of the BALT, lamina propria and within the airway epithelium, and plasma cells containing IgG or IgA at the periphery of the BALT, in the lamina propria of bronchi and bronchioles, in alveolar septa, and around bronchial submucosal glands. The hyperplastic BALT in PEN cases consisted of macrophages, dendritic cells, T and B lymphocytes, and IgG+ and IgA+ plasma cells. CD4+ cells predominated over CD8+ cells. Local humoral immunity appears to play an important role in the infection.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3221-3228
Author(s):  
S Brochu ◽  
C Baron ◽  
R Belanger ◽  
C Perreault

Because bone marrow (BM) transplantation is used with increasing frequency, it is important to elucidate the mechanisms involved in the establishment of tolerance to host minor histocompatibility antigens (MiHA) in recipients transplanted with T-cell-undepleted marrow grafts. We have previously shown that BM chimeras transplanted across MiHA barriers showed specific unresponsiveness to MiHA expressed on recipient-type concanavalin A blasts. Because expression of many MiHA is tissue-specific, we wanted to determine if chimera T lymphocytes would be tolerant to MiHA expressed by all host tissues and organs. To investigate this issue, we measured in vivo proliferation of lymphoid cells from normal C57BL/10 (B10) mice and (B10-->LP) chimeras in tissues and organs of lethally irradiated syngeneic and allogeneic recipients. Donor B10 cells were either untreated, or depleted with anti-Thy-1.2, anti-CD4, or anti-CD8 antibodies. Transplantation of B10 cells in LP recipients triggered an important T-cell-dependent 125I- dUrd uptake in several organs that involved both CD4+ and CD8+ cells. Using Thy-1-congeneic mice we showed that in long-term chimeras practically all CD4+ and CD8+ T lymphocytes were derived from hematopoietic progenitors and not from mature T cells present in the BM graft. When (B10-->LP) BM chimera cells were injected to secondary recipients, no proliferation was observed in any organ of LP hosts whereas normal proliferation was seen in H-2k allogeneic hosts. Thus, in these BM chimeras, tolerance encompasses MiHA expressed by all organs.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2688-2693 ◽  
Author(s):  
F Caligaris-Cappio ◽  
L Bergui ◽  
MG Gregoretti ◽  
G Gaidano ◽  
M Gaboli ◽  
...  

We have verified the hypothesis that multiple myeloma (MM) may be disseminated by circulating clonogenic cells that selectively home to the bone marrow (BM) to receive the signal(s) leading to proliferation, terminal differentiation, and production of the osteoclast activating factors. Long-term cultures of stromal cells have been developed from the BM of nine patients with MM. These cells were mostly fibroblast- like elements, interspersed with a proportion of scattered macrophages and rare osteoclasts. BM stromal cells were CD54+, produced high levels of interleukin-6 (IL-6) and measurable amounts of IL-1 beta, and were used as feeder layers for autologous peripheral blood mononuclear cells (PBMC). After 3 weeks of cocultures, monoclonal B lymphocytes and plasma cells, derived from PBMC, developed and the number of osteoclasts significantly increased. Both populations grew tightly adherent to the stromal cell layer and their expansion was matched by a sharp increase of IL-6 and by the appearance of IL-3 in the culture supernatant. These data attribute to BM stromal cells a critical role in supporting the growth of B lymphocytes, plasma cells, and osteoclasts and the in vivo dissemination of MM.


Sign in / Sign up

Export Citation Format

Share Document