Regulation of Tissue Factor Activity: Conformational Changes in Tissue Factor Associated with Cleavage of the Cysteine 186-Cysteine 209 Disulfide Bond.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 270-270 ◽  
Author(s):  
Jacky Chi Ki Ngo ◽  
Margaret Jacobs ◽  
Barbara C. Furie ◽  
Bruce Furie

Abstract Tissue factor (TF) exists in an encrypted, inactive form and an active, procoagulant form. The extracellular domain of TF contains two disulfide bonds. The crystal structure of the active form of TF reveals Cys186 and Cys209 in an unusual solvent-exposed disulfide bond. It was recently proposed that encrypted TF contains two free thiols at Cys186 and Cys209, and formation of a disulfide bond between Cys186 and Cys209 is associated with the decryption of TF (Chen et al, Biochemistry 2006). To characterize the structural differences between the putative encrypted TF and active TF, containing one and two disulfide bonds respectively, we developed an assay to quantitate the free thiols and disulfide bonds in recombinant TF and examined the solvent accessibility of the two disulfide bonds under native and denatured conditions. The perturbations of chromophores of TF by UV difference spectroscopy during specific reduction of Cys186–Cys209 were then examined. In order to quantitate the free thiols and disulfide bonds, TF was subjected to Alexa 488-maleimide (green) labeling to identify any free thiols and, after reduction with TCEP, a second labeling with Alexa 647-maleimide (red) to identify newly exposed free thiols formerly involved in disulfide bonds. Alexa-labeled TF was subjected to SDS gel electrophoresis and the gel was developed on a fluorescence imager to provide quantitative analysis of the integrated fluorescence intensity for each Alexa dye separately. The molar concentrations of free thiol in TF before TCEP treatment and thiols exposed after reduction were determined by comparison to calibration curves that were generated using Alexa maleimide-albumin conjugates. Recombinant TF in solution contains 0.2 moles of free thiol. Upon treatment with 10 mM TCEP under native conditions, TF is partially reduced and contains 1.97 moles of half cystine thiols. TF is fully reduced by 10 mM TCEP under denaturing conditions in the presence of 4 M urea (4.29 moles of thiols, theoretical=4.0 moles). This is consistent with the observation that only one disulfide bond is solvent-exposed in native TF and is accessible for reduction. We then performed ultraviolet absorption difference spectroscopy using the partitioned cell technique to monitor any structural transition during partial reduction of TF. The UV difference spectrum comparing the TCEP-treated TF and unreduced TF showed three peaks, one at 278 nm, a major peak at 285 nm and a small shoulder at 292 nm, that is characteristic of red-shifts in absorption of both tyrosine and tryptophan. Under the conditions employed, this conformational transition was completed in 60 minutes. These results comparing fully oxidized, active TF and partially reduced, encrypted TF indicate that tyrosine and tryptophan residues in TF become protected from solvent upon reduction of the Cys186–Cys209 disulfide bond. In conclusion, we have demonstrated by a new assay that only one disulfide bond within active TF is solvent-exposed and accessible for reduction. The partial reduction of TF at this disulfide bond results in a conformational transition that is associated with the protection of tyrosine and tryptophan residues, indicating structural difference between active TF and encrypted, inactive TF.

2014 ◽  
Vol 95 (12) ◽  
pp. 2820-2830 ◽  
Author(s):  
Feifei Yin ◽  
Manli Wang ◽  
Ying Tan ◽  
Fei Deng ◽  
Just M. Vlak ◽  
...  

The major envelope fusion protein F of the budded virus of baculoviruses consists of two disulfide-linked subunits: an N-terminal F2 subunit and a C-terminal, membrane-anchored F1 subunit. There is one cysteine in F2 and there are 15 cysteines in F1, but their role in disulfide linking is largely unknown. In this study, the inter- and intra-subunit disulfide bonds of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) F protein were analysed by site-directed mutagenesis. Results indicated that in a functional F protein, an inter-subunit disulfide bond exists between amino acids C108 (F2) and C241 (F1). When C241 was mutated, an alternative disulfide bond was formed between C108 and C232, rendering F non-functional. No inter-subunit bridge was observed in a double C232/C241 mutant of F1. C403 was not involved in the formation of inter-subunit disulfide bonding, but mutation of this amino acid decreased viral infectivity significantly, suggesting that it might be involved in intra-subunit disulfide bonds. The influence of reductant [tris(2-carboxyethyl) phosphine (TCEP)] and free-thiol inhibitors [4-acetamido-4′-maleimidylstilbene 2,2′-disulfonic acid (AMS) and 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB)] on the infectivity of HearNPV was tested. The results indicated that TCEP greatly decreased the infection of HzAm1 cells by HearNPV. In contrast, AMS and DTNB had no inhibitory effect on viral infectivity. The data suggested that free thiol/disulfide isomerization was not likely to play a role in viral entry and infectivity.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5337
Author(s):  
Mahesh Narayan

Oxidative protein folding involves the formation of disulfide bonds and the regeneration of native structure (N) from the fully reduced and unfolded protein (R). Oxidative protein folding studies have provided a wealth of information on underlying physico-chemical reactions by which disulfide-bond-containing proteins acquire their catalytically active form. Initially, we review key events underlying oxidative protein folding using bovine pancreatic ribonuclease A (RNase A), bovine pancreatic trypsin inhibitor (BPTI) and hen-egg white lysozyme (HEWL) as model disulfide bond-containing folders and discuss consequential outcomes with regard to their folding trajectories. We re-examine the findings from the same studies to underscore the importance of forming native disulfide bonds and generating a “native-like” structure early on in the oxidative folding pathway. The impact of both these features on the regeneration landscape are highlighted by comparing ideal, albeit hypothetical, regeneration scenarios with those wherein a native-like structure is formed relatively “late” in the R→N trajectory. A special case where the desired characteristics of oxidative folding trajectories can, nevertheless, stall folding is also discussed. The importance of these data from oxidative protein folding studies is projected onto outcomes, including their impact on the regeneration rate, yield, misfolding, misfolded-flux trafficking from the endoplasmic reticulum (ER) to the cytoplasm, and the onset of neurodegenerative disorders.


Endocrinology ◽  
1997 ◽  
Vol 138 (2) ◽  
pp. 588-593 ◽  
Author(s):  
Y. Bobovnikova ◽  
P. N. Graves ◽  
H. Vlase ◽  
T. F. Davies

Abstract To study the interaction of TSH receptor (TSHR) autoantibodies with receptor protein, it is necessary first to express the receptor in the proper conformation including the formation of correct disulfide bridges. However, the reducing environment of the Escherichia coli (E. coli) cytoplasm prevents the generation of protein disulfide bonds and limits the solubility and immunoreactivity of recombinant human TSHR (hTSHR) products. To circumvent these limitations, hTSHR complementary DNA encoding the extracellular domain (hTSHR-ecd; amino acids 21–415) was inserted into the vector pGEX-2TK by directional cloning and used to transform the thioredoxin reductase mutant strain of E. coli (Ad494), which allowed formation of disulfide bonds in the cytoplasm. After induction, the expressed soluble hTSHR-ecd fusion protein was detected by Western blot analysis using a monoclonal antibody directed against hTSHR amino acids 21–35. This showed that over 50% of the expressed hTSHR-ecd was soluble in contrast to expression in a wild-type E. coli (strain αF′), where the majority of the recombinant receptor was insoluble. The soluble recombinant receptor was affinity purified and characterized. Under nonreducing SDS-PAGE conditions, the soluble hTSHR-ecd migrated as refolded, disulfide bond-stabilized, multimeric species, whose formation was independent of fusion partner protein. This product was found to be biologically active as evidenced by the inhibition of the binding of 125I-TSH to the full-length hTSHR expressed in transfected CHO cells and was used to develop a competitive capture enzyme-linked immunosorbent assay for mapping of hTSHR antibody epitopes. Hence, hTSHR-ecd produced in bacteria with a thioredoxin reductase mutation was found to be highly soluble and biologically relevant.


2013 ◽  
Vol 439 (2) ◽  
pp. 184-186 ◽  
Author(s):  
Xiaojuan Li ◽  
Wei Xu ◽  
Brittany Paporello ◽  
Daisy Richardson ◽  
Hongcheng Liu

1998 ◽  
Vol 64 (12) ◽  
pp. 4891-4896 ◽  
Author(s):  
Ji Qiu ◽  
James R. Swartz ◽  
George Georgiou

ABSTRACT The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins inE. coli without the need for in vitro refolding.


Author(s):  
Daniel Yu ◽  
Megan A Outram ◽  
Emma Creen ◽  
Ashley Smith ◽  
Yi-Chang Sung ◽  
...  

Effectors are a key part of the arsenal of plant pathogenic fungi and promote pathogen virulence and disease. Effectors typically lack sequence similarity to proteins with known functional domains and motifs, limiting our ability to predict their functions and understand how they are recognised by plant hosts. As a result, cross-disciplinary approaches involving structural biology and protein biochemistry are often required to decipher and better characterise effector function. These approaches are reliant on high yields of relatively pure protein, which often requires protein production using a heterologous expression system. For some effectors, establishing an efficient production system can be difficult, particularly those that require multiple disulfide bonds to achieve their naturally folded structure. Here, we describe the use of a co-expression system within the heterologous host E. coli termed CyDisCo (cytoplasmic disulfide bond formation in E. coli) to produce disulfide bonded fungal effectors. We demonstrate that CyDisCo and a naturalised co-expression approach termed FunCyDisCo (Fungi-CyDisCo) can significantly improve the production yields of numerous disulfide bonded effectors from diverse fungal pathogens. The ability to produce large quantities of functional recombinant protein has facilitated functional studies and crystallisation of several of these reported fungal effectors. We suggest this approach could be broadly useful in the investigation of the function and recognition of a broad range of disulfide-bond containing effectors.


Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 3900-3908 ◽  
Author(s):  
Usha R. Pendurthi ◽  
Samit Ghosh ◽  
Samir K. Mandal ◽  
L. Vijaya Mohan Rao

AbstractA majority of tissue factor (TF) on cell surfaces exists in a cryptic form (ie, coagulation function inactive) but retains its functionality in cell signaling. Recent studies have suggested that cryptic TF contains unpaired cysteine thiols and that activation involves the formation of the disulfide bond Cys186-Cys 209 and that protein disulfide isomerase (PDI) regulates TF coagulant and signaling activities by targeting this disulfide bond. This study was carried out to investigate the validity of this novel concept. Although treatment of MDA 231 tumor cells, fibroblasts, and stimulated endothelial cells with the oxidizing agent HgCl2 markedly increased the cell-surface TF coagulant activity, the increase is associated with increased anionic phospholipids at the cell surface. Annexin V, which binds to anionic phospholipids, attenuated the increased TF coagulant activity. It is noteworthy that treatment of cells with reducing agents also increased the cell surface TF activity. No evidence was found for either detectable expression of PDI at the cell surface or association of TF with PDI. Furthermore, reduction of PDI with the gene silencing had no effect on either TF coagulant or cell signaling functions. Overall, the present data undermine the recently proposed hypothesis that PDI-mediated disulfide exchange plays a role in regulating TF procoagulant and cell signaling functions.


2014 ◽  
Vol 70 (4) ◽  
pp. 1005-1014 ◽  
Author(s):  
Beatriz G. Guimarães ◽  
Djemel Hamdane ◽  
Christophe Lechauve ◽  
Michael C. Marden ◽  
Béatrice Golinelli-Pimpaneau

Neuroglobin plays an important function in the supply of oxygen in nervous tissues. In human neuroglobin, a cysteine at position 46 in the loop connecting the C and D helices of the globin fold is presumed to form an intramolecular disulfide bond with Cys55. Rupture of this disulfide bridge stabilizes bi-histidyl haem hexacoordination, causing an overall decrease in the affinity for oxygen. Here, the first X-ray structure of wild-type human neuroglobin is reported at 1.74 Å resolution. This structure provides a direct observation of two distinct conformations of the CD region containing the intramolecular disulfide link and highlights internal cavities that could be involved in ligand migration and/or are necessary to enable the conformational transition between the low and high oxygen-affinity states following S—S bond formation.


2009 ◽  
Vol 83 (13) ◽  
pp. 6464-6476 ◽  
Author(s):  
Yao-Cheng Ching ◽  
Che-Sheng Chung ◽  
Cheng-Yen Huang ◽  
Yu Hsia ◽  
Yin-Liang Tang ◽  
...  

ABSTRACT Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.


Glycobiology ◽  
2019 ◽  
Vol 30 (2) ◽  
pp. 120-129 ◽  
Author(s):  
Tong Yang ◽  
Yuan Yao ◽  
Xing Wang ◽  
Yuying Li ◽  
Yunlong Si ◽  
...  

Abstract Galectin-13 (Gal-13) plays numerous roles in regulating the relationship between maternal and fetal tissues. Low expression levels or mutations of the lectin can result in pre-eclampsia. The previous crystal structure and gel filtration data show that Gal-13 dimerizes via formation of two disulfide bonds formed by Cys136 and Cys138. In the present study, we mutated them to serine (C136S, C138S and C136S/C138S), crystalized the variants and solved their crystal structures. All variants crystallized as monomers. In the C136S structure, Cys138 formed a disulfide bond with Cys19, indicating that Cys19 is important for regulation of reversible disulfide bond formation in this lectin. Hemagglutination assays demonstrated that all variants are inactive at inducing erythrocyte agglutination, even though gel filtration profiles indicate that C136S and C138S could still form dimers, suggesting that these dimers do not exhibit the same activity as wild-type (WT) Gal-13. In HeLa cells, the three variants were found to be distributed the same as with WT Gal-13. However, a Gal-13 variant (delT221) truncated at T221 could not be transported into the nucleus, possibly explaining why women having this variant get pre-eclampsia. Considering the normally high concentration of glutathione in cells, WT Gal-13 should exist mostly as a monomer in cytoplasm, consistent with the monomeric variant C136S/C138S, which has a similar ability to interact with HOXA1 as WT Gal-13.


Sign in / Sign up

Export Citation Format

Share Document