Environmental Factors Determine Lineage Fate in a Human Model of MLL-AF9 Leukemia.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3374-3374
Author(s):  
Junping Wei ◽  
Wunderlich Mark ◽  
Catherine Fox ◽  
Jorge F. DiMartino ◽  
James C. Mulloy

Abstract The MLL gene is fused to over 30 different fusion partners by reciprocal translocations in human acute leukemias. Some fusion partners are associated almost exclusively with myeloid or lymphoid leukemias while others are found in both. The degree to which the fusion partner contributes to the lineage of the resulting leukemia remains a matter of controversy. Using a novel model system, we demonstrate that myeloid vs lymphoid differentiation of hematopoietic progenitors transformed by MLL-AF9 can be predictably driven by cytokine combinations in vitro and in vivo. The t(9;11)(p22;q23) MLL-AF9 fusion gene is commonly associated with M5 myeloid leukemia but approximately 5% of MLL-AF9 leukemia is B-lymphoid. Expression of MLL-AF9 in human CD34+ cells enables efficient modeling of acute myeloid, B-lymphoid and biphenotypic leukemia. The lineage of the resulting leukemia can be readily manipulated in vitro (by altering the growth factors) or in vivo (using B-lymphoid-biased NOD/SCID mice or myeloid-biased NOD/SCID that are transgenic for human SCF, GM-CSF and IL-3). The cytokines IL-3, IL-7 and FLT3L appear to exert the major effects on lineage fate determination in vitro. Through limiting dilution and clonality analyses, we find a complex relationship between different leukemia stem cell compartments, with some LSC demonstrating multipotentiality and others showing strict lineage commitment. Data indicate that these differences are primarily due to microenvironment effects, with the identity of the initial cell that is targeted by MLL-AF9 possibly playing a role. These results would argue against a deterministic role for the fusion partner in MLL leukemia. This human-based system should prove useful in addressing the mechanism of lineage promiscuity of MLL leukemias. It also affords us the unique ability to determine the susceptibility of the different LSC to standard chemotherapeutic compounds, in addition to identifying novel therapeutic strategies that may be effective in treating MLL leukemia.

Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 669-677 ◽  
Author(s):  
Weili Chen ◽  
Quanzhi Li ◽  
Wendy A. Hudson ◽  
Ashish Kumar ◽  
Nicole Kirchhof ◽  
...  

The 2 most frequent human MLL hematopoietic malignancies involve either AF4 or AF9 as fusion partners; each has distinct biology but the role of the fusion partner is not clear. We produced Mll-AF4 knock-in (KI) mice by homologous recombination in embryonic stem cells and compared them with Mll-AF9 KI mice. Young Mll-AF4 mice had lymphoid and myeloid deregulation manifest by increased lymphoid and myeloid cells in hematopoietic organs. In vitro, bone marrow cells from young mice formed unique mixed pro-B lymphoid (B220+CD19+CD43+sIgM–, PAX5+, TdT+, IgH rearranged)/myeloid (CD11b/Mac1+, c-fms+, lysozyme+) colonies when grown in IL-7– and Flt3 ligand-containing media. Mixed lymphoid/myeloid hyperplasia and hematologic malignancies (most frequently B-cell lymphomas) developed in Mll-AF4 mice after prolonged latency; long latency to malignancy indicates that Mll-AF4–induced lymphoid/myeloid deregulation alone is insufficient to produce malignancy. In contrast, young Mll-AF9 mice had predominately myeloid deregulation in vivo and in vitro and developed myeloid malignancies. The early onset of distinct mixed lymphoid/myeloid lineage deregulation in Mll-AF4 mice shows evidence for both “instructive” and “noninstructive” roles for AF4 and AF9 as partners in MLL fusion genes. The molecular basis for “instruction” and secondary cooperating mutations can now be studied in our Mll-AF4 model.


2005 ◽  
Vol 25 (24) ◽  
pp. 10965-10978 ◽  
Author(s):  
Ryoichi Ono ◽  
Masafumi Ihara ◽  
Hideaki Nakajima ◽  
Katsutoshi Ozaki ◽  
Yuki Kataoka-Fujiwara ◽  
...  

ABSTRACT Septins are evolutionarily conserved GTP-binding proteins that can heteropolymerize into filaments. Recent studies have revealed that septins are involved in not only diverse normal cellular processes but also the pathogenesis of various diseases, including cancer. SEPT6 is ubiquitously expressed in tissues and one of the fusion partner genes of MLL in the 11q23 translocations implicated in acute leukemia. However, the roles of this septin in vivo remain elusive. We have developed Sept6-deficient mice that exhibited neither gross abnormalities, changes in cytokinesis, nor spontaneous malignancy. Sept6 deficiency did not cause any quantitative changes in any of the septins evaluated in this study, nor did it cause any additional changes in the Sept4-deficient mice. Even the depletion of Sept11, a close homolog of Sept6, did not affect the Sept6-null cells in vitro, thus implying a high degree of redundancy in the septin system. Furthermore, a loss of Sept6 did not alter the phenotype of myeloproliferative disease induced by MLL-SEPT6, thus suggesting that Sept6 does not function as a tumor suppressor. To our knowledge, this is the first report demonstrating that a disruption of the translocation partner gene of MLL in 11q23 translocation does not contribute to leukemogenesis by the MLL fusion gene.


2002 ◽  
Vol 22 (18) ◽  
pp. 6542-6552 ◽  
Author(s):  
Chi Wai So ◽  
Michael L. Cleary

ABSTRACT MLL-AFX is a fusion gene created by t(X;11) chromosomal translocations in a subset of acute leukemias of either myeloid or lymphoid derivation. It codes for a chimeric protein consisting of MLL fused to AFX, a forkhead transcription factor that normally regulates genes involved in apoptosis and cell cycle progression. We demonstrate here that forced expression of MLL-AFX enhances the self-renewal of hematopoietic progenitors in vitro and induces acute myeloid leukemias after long latencies in syngeneic recipient mice. MLL-AFX interacts with the transcriptional coactivator CBP, which is also a fusion partner for MLL in human leukemias. A potent minimal transactivation domain (CR3) at the C terminus of AFX mediates interactions with the KIX domain of CBP and is necessary for transformation of myeloid progenitors by MLL-AFX. However, CR3 alone is not sufficient, suggesting that simple acquisition of a transactivation domain per se does not activate the oncogenic potential of MLL. Rather, two conserved transcriptional effector domains (CR2 and CR3) of AFX are required for full oncogenicity of MLL-AFX and also endow it with the potential to competitively interfere with transcription and apoptosis mediated by wild-type forkhead proteins. Furthermore, a dominant-negative mutant of AFX containing CR2 and CR3 enhances the growth of myeloid progenitors in vitro, although considerably less effectively than does MLL-AFX. Taken together, these data suggest that recruitment of transcriptional cofactors utilized by forkhead proteins is a critical requirement for oncogenic action of MLL-AFX, which may impact both MLL- and forkhead-dependent transcriptional pathways.


Blood ◽  
2012 ◽  
Vol 120 (18) ◽  
pp. 3688-3698 ◽  
Author(s):  
Szandor Simmons ◽  
Marko Knoll ◽  
Christopher Drewell ◽  
Ingrid Wolf ◽  
Hans-Joachim Mollenkopf ◽  
...  

Abstract The expression of Pax5 commits common lymphoid progenitor cells to B-lymphoid lineage differentiation. Little is known of possible variations in the levels of Pax5 expression and their influences on hematopoietic development. We have developed a retroviral transduction system that allows for the study of possible intermediate stages of this commitment by controlling the levels of Pax5 expressed in Pax5-deficient progenitors in vitro and in vivo. Retroviral transduction of Pax5-deficient pro-/pre-B cell lines with a doxycycline-inducible (TetON) form of the human Pax5 (huPax5) gene yielded cell clones that could be induced to different levels of huPax5 expression. Clones inducible to high levels developed B220+/CD19+/IgM+ B cells, while clones with low levels differentiated to B220+/CD19−/CD11b+/Gr-1− B-lymphoid/myeloid biphenotypic cells in vitro and in vivo. Microarray analyses of genes expressed at these lower levels of huPax5 identified C/ebpα, C/ebpδ, Pu.1, Csf1r, Csf2r, and Gata-3 as myeloid-related genes selectively expressed in the pro-/pre-B cells that can develop under myeloid/lymphoid conditions to biphenotypic cells. Therefore, reduced expression of huPax5 during the induction of early lymphoid progenitors to B-lineage–committed cells can fix this cellular development at a stage that has previously been seen during embryonic development and in acute lymphoblastic lymphoma–like biphenotypic acute leukemias.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3368-3368
Author(s):  
Junping Wei ◽  
Mark Wunderlich ◽  
Chad Harris ◽  
Benjamin Mizukawa ◽  
Yi Zheng ◽  
...  

Abstract The t(9;11) translocation fusion gene MLL-AF9 (MA9) is commonly found in acute myeloid and lymphoid leukemia and is associated with intermediate to poor outcome. The specific signaling pathways downstream of MA9 are still poorly understood. It has recently been reported that MA9 leukemia cells express higher levels of the small GTPase protein Rac and CDC42 when compared to in vitro MA9 immortal cells in a murine model. To determine the importance of Rac GTPase signaling in MA9-induced transformation, we used an MA9 leukemia model we recently established involving MA9 fusion gene expression in human CD34+ cells. Treatment with the Rac specific inhibitor NSC23766, or transient knockdown of Rac expression by RNAi, induced rapid apoptosis in MA9 cells but not in normal cord blood or t(8;21) translocation fusion gene AML-ETO expressing cells. These data demonstrate that the Rac signaling pathway plays a critical role in the growth and survival of MA9 leukemia cells. To extend this work to an in vivo genetic model, we used mice deficient in Rac2 (Rac2-KO) or with floxed alleles of Rac1 in mice transgenic for Mx-Cre. Leukemia development was compared in mice transplanted with MA9-transduced wild type, Rac1 or Rac2 deficient low density bone marrow cells. Poly I:C injections were performed 2 weeks after transplantation to delete Rac1. Rac deletion was confirmed by PCR and western blot analysis. Mice that received either WT or Rac1−/ − MA9 expressing cells uniformly developed AML and died at 3 to 5 months. Mice transplanted with Rac2-KO cells expressing MA9 showed a decreased incidence and increased latency (6 to 10 months) of AML development despite the persistent engraftment of MA9-expressing cells. All three groups of mice maintained MA9 EGFP+ cells in peripheral blood over the entire experiment, and eventually gave rise to similar end stage AML with a Gr-1+/Mac-1+/Kit+/B220-/CD3- phenotype and myelomonocytic blast morphology. Combined with our observation in human CD34+ cord blood cells transduced with MA9, these in vitro and in vivo data indicate that MA9-mediated transformation and survival requires Rac and their downstream effectors. Rac2 signaling appears to be particularly important in the murine MA9 AML model. Therapeutic targeting of Rac could be a unique and important approach to treating MLL leukemia.


2020 ◽  
Author(s):  
Piero Zollet ◽  
Timothy E.Yap ◽  
M Francesca Cordeiro

The transparent eye media represent a window through which to observe changes occurring in the retina during pathological processes. In contrast to visualising the extent of neurodegenerative damage that has already occurred, imaging an active process such as apoptosis has the potential to report on disease progression and therefore the threat of irreversible functional loss in various eye and brain diseases. Early diagnosis in these conditions is an important unmet clinical need to avoid or delay irreversible sight loss. In this setting, apoptosis detection is a promising strategy with which to diagnose, provide prognosis, and monitor therapeutic response. Additionally, monitoring apoptosis in vitro and in vivo has been shown to be valuable for drug development in order to assess the efficacy of novel therapeutic strategies both in the pre-clinical and clinical setting. Detection of Apoptosing Retinal Cells (DARC) technology is to date the only tool of its kind to have been tested in clinical trials, with other new imaging techniques under investigation in the fields of neuroscience, ophthalmology and drug development. We summarize the transitioning of techniques detecting apoptosis from bench to bedside, along with the future possibilities they encase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruijie Zeng ◽  
Jinghua Wang ◽  
Zewei Zhuo ◽  
Yujun Luo ◽  
Weihong Sha ◽  
...  

AbstractNecrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katharina Ernst ◽  
Ann-Katrin Mittler ◽  
Veronika Winkelmann ◽  
Carolin Kling ◽  
Nina Eberhardt ◽  
...  

AbstractWhooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


2001 ◽  
Vol 69 (3) ◽  
pp. 1483-1487 ◽  
Author(s):  
Robert E. Throm ◽  
Stanley M. Spinola

ABSTRACT Haemophilus ducreyi expresses several putative virulence factors in vitro. Isogenic mutant-to-parent comparisons have been performed in a human model of experimental infection to examine whether specific gene products are involved in pathogenesis. Several mutants (momp, ftpA, losB, lst, cdtC, and hhdB) were as virulent as the parent in the human model, suggesting that their gene products did not play a major role in pustule formation. However, we could not exclude the possibility that the gene of interest was not expressed during the initial stages of infection. Biopsies of pustules obtained from volunteers infected with H. ducreyiwere subjected to reverse transcription-PCR. Transcripts corresponding to momp, ftpA, losB, lst, cdtB, and hhdA were expressed in vivo. In addition, transcripts for other putative virulence determinants such as ompA2, tdhA, lspA1, andlspA2 were detected in the biopsies. These results indicate that although several candidate virulence determinants are expressed during experimental infection, they do not have a major role in the initial stages of pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document