Identification and Characterization of a Human Platelet Glycoprotein VI Peptidomimetic Permitting Molecular Imaging of Fibrosis.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1830-1830
Author(s):  
Martine Jandrot-Perrus ◽  
Julien Muzard ◽  
Laure Sarda-Mantel ◽  
Stéphane Loyau ◽  
Alain Meulemans ◽  
...  

Abstract Glycoprotein VI (GPVI), the main receptor for platelet activation by collagen, has been shown to play an important role in thrombosis, vascular remodelling and atherothrombosis. GPVI which belongs to the immunoglobulin receptor family, binds to fibrillar type I and type III collagens of vascular as well as non-vascular origin. 9O12.2, a high affinity monoclonal antibody directed to the GPVI extracellular domain, blocks GPVI binding to collagen and possess antithrombotic properties (Ohlmann et al J.Thromb. Haemost. 2008,6:1013). We have hypothesized that the 9O12.2 epitope overlaps, at least in part, with the collagen-binding site on GPVI and (ii) that molecules mimicking the 9O12.2 epitope can be expected to be antithrombotic by competing with platelet GPVI for binding to collagen and/or to act as tracers for collagen in vivo. A bacterial random 12 mer cyclic peptide library was screened against the 9O12.2 IgG. Twenty clones were selected. Sequencing the inserts revealed 9 peptidic motifs with 7 identical residues. One sequence was selected to synthesize a biotin-coupled constrained peptide. (designated collagelin). Surface plasmon resonance (SPR) analysis showed that 9O12.2 IgG bound to immobilized collagelin (KD 10−6M) and that binding was inhibited in the presence of soluble recombinant (sr)GPVI or after disulfide bridge reduction as expected for a molecule mimicking the 9O12.2 epitope known to be conformational (Lecut et al. J.Biol.Chem.2004, 279:52293). Using SPR and solid phase assays, we observed that collagelin bound to immobilized fibrillar collagen (KD10−7M) and that binding was inhibited by 9O12.2 IgG and by rsGPVI, indicating that collagelin mimics at least in part the collagen-binding site of GPVI. Collagelin did not inhibit collagen-induced platelet aggregation in vitro. However, histochemical analysis demonstrated that it bound to collagen on sections of rat aortas and of rat tail tendon. We then hypothesized that collagelin could be retained in vivo at sites of collagen accumulation, thus allowing isotopic imaging of fibrosis. Collagelin and a control peptide (same size and cyclic,) were labeled either indirectly using 99mTc-streptavidin or directly with 99mTc and iv injected into rats presenting fibrotic scars of myocardial infarction. Radiolabeled collagelin uptake in fibrosis areas was demonstrated in vivo by planar and tomographic scintigraphy. Mean heart-to-lung ratios were of 2.76±0.36 and 2.08±0.17 for 99m Tc-streptavidin-coupled collagelin and 99m Tc-collagelin respectively. Ex vivo, autoradiography on frozen heart sections showed a clear uptake of labeled-collagelin in the infarct collagen-rich scars with mean scar to remote myocardium activity ratios of 2.52±0.2 and 2.92±.053 for 99mTc-streptavidin-coupled collagelin and 99mTc-collagelin respectively as compared with 1.82±0.32 and 1.61±0.23 for the control peptides (p<0.006 and 0.01). In conclusion, we have produced a peptide which partly mimics the collagen binding site of GPVI, specifically binds to collagen and appears to be a specific tool for direct targeting of collagen in vitro and in vivo. Collagelin or derived molecules thus potentially have a large field of applications, as a tracer of fibrotic lesions, in non-invasive vascular as vascular pathologies.

Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 3948-3952 ◽  
Author(s):  
Valerie Schulte ◽  
Tamer Rabie ◽  
Miroslava Prostredna ◽  
Barsom Aktas ◽  
Sabine Grüner ◽  
...  

Abstract Glycoprotein (GP) VI is an essential collagen receptor on platelets and may serve as an attractive target for antithrombotic therapy. We have previously shown that a monoclonal antibody (mAb) against the major collagen-binding site on mouse GPVI (JAQ1) induces irreversible down-regulation of the receptor and, consequently, long-term antithrombotic protection in vivo. To determine whether this unique in vivo effect of JAQ1 is based on its interaction with the ligand-binding site on GPVI, we generated new mAbs against different epitopes on GPVI (JAQ2, JAQ3) and tested their in vitro and in vivo activity. We show that none of the mAbs inhibited platelet activation by collagen or the collagen-related peptide in vitro. Unexpectedly, however, injection of either antibody induced depletion of GPVI with the same efficacy and kinetics as JAQ1. Importantly, this effect was also seen with monovalent F(ab) fragments of JAQ2 and JAQ3, excluding the involvement of the Fc part or the dimeric form of anti-GPVI antibodies in this process. This indicates that anti-GPVI agents, irrespective of their binding site may generally induce down-regulation of the receptor in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 306-306
Author(s):  
Meredith W. Miller ◽  
Soni Basra ◽  
Paul C. Billings ◽  
Jamie Gewirtz ◽  
William F. DeGrado ◽  
...  

Abstract Vascular damage due to trauma or disease exposes circulating platelets to collagen in the subendothelial matrix. This is a critical event in the formation of a hemostatic plug or an occluding thrombus because collagen is not only a substrate for platelet adhesion but is also a strong platelet agonist. Platelets possess two physiologic collagen receptors: glycoprotein VI, a member of the immunoglobin superfamily, and the integrin α2β1. To design small molecule inhibitors of the interaction of platelets with collagen, we focused on α2β1 as a target because murine models of α2β1 deficiency display normal bleeding times and only a slight decrease in platelet activation by collagen and because the small number of reported patients with congenital α2β1 deficiency demonstrated only a mild bleeding diathesis. Thus, α2β1 antagonists could be effective anti-thrombotic agents with minimal toxicity, especially when combined with other anti-platelet drugs. We have developed a class of compounds that target the I-like domain of the β1 subunit, an allosteric site that regulates collagen binding to α2β1 by preventing the conversion of α2β1 from an inactive (low affinity) to an active (high affinity) conformation. This class of compounds is based on a proline-substituted 2,3-diaminopropionic acid scaffold. Structure-activity relationship studies of the scaffold have focused on optimization of the proline moiety, the urea functionality, and the sulfonyl group and have resulted in the development of potent inhibitors of α2β1-mediated platelet adhesion to collagen with IC50’s in the high picomolar to low nanomolar range. In particular, optimization of the proline moiety lead to compounds with high potency: transitioning from proline (DB496, IC50 of 29–62 nM) to a thiazolidine (SB68A) improved the IC50 to 2–8 nM; adding a methyl group at the 2 position of the thiazolidine (SB68B) slightly improved the IC50 to 1–12 nM; adding two methyl groups at the 5 position of the thiazolidine (SW4-161) resulted in a lead compound with an IC50 of 0.33–8 nM. As expected, the compounds had no effect on the binding of isolated α2 I-domains to collagen, consistent with their I-like domain mode of activity. Further, they were specific for α2β1-mediated platelet adhesion to collagen because they had no impact on ADP-stimulated platelet aggregation when added at 2 μM, a concentration more than 100-fold greater than the IC50 for inhibition of platelet adhesion to collagen. The compounds were also strong inhibitors of murine platelet adhesion to collagen and when tested in the ferric chloride-initiated murine carotid artery injury model, displayed activity similar to aspirin. Thus, 71% of untreated mice in this thrombosis model developed occlusive thrombi that remained stable for the 30 min duration of the assay, whereas stable thrombi developed in only 32% of mice treated with 1g/kg aspirin orally and in 41% of mice receiving 60 mg/kg CSW4-161intravenously. In summary, we have developed a class of potent inhibitors of the integrin α2β1 that demonstrate both in vitro and in vivo anti-platelet activity. Further development of this class of compounds may result in novel and relatively non-toxic anti-thrombotic agents.


1998 ◽  
Vol 337 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Dae Kee LEE ◽  
Javier CARRASCO ◽  
Juan HIDALGO ◽  
Glen K. ANDREWS

Mechanisms of regulation of mouse metallothionein (MT)-I gene expression in response to bacterial endotoxin-lipopolysaccharide (LPS) were examined. Northern blot analysis of hepatic MT-I mRNA in interleukin (IL)-6 or tumour necrosis factor (TNF)-receptor type I knock-out mice demonstrated that IL-6, not TNF-α, is of central importance in mediating hepatic MT-I gene expression in vivo after LPS injection. In vivo genomic footprinting of the MT-I promoter demonstrated a rapid increase, after LPS injection, in the protection of several guanine residues in the -250 to -300 bp region of the MT-I promoter. The protected bases were within sequences which resemble binding sites for the signal transducers and activators of transcription (STAT) transcription factor family. Electrophoretic mobility-shift assays using oligonucleotides from footprinted MT-I promoter regions showed that injection of LPS resulted in a rapid increase in the specific, high-affinity, in vitro binding of STAT1 and STAT3 to a binding site at -297 bp (TTCTCGTAA). Western blotting of hepatic nuclear proteins showed that the time-course for changes of total nuclear STAT1 and STAT3 after LPS injection paralleled the increased complex formation in vitro using this oligonucleotide, and binding was specifically competed for by a functional STAT-binding site from the rat α2-macroglobulin promoter. Furthermore, the MT-I promoter -297 bp STAT-binding site conferred IL-6 responsiveness in the context of a minimal promoter in transient transfection assays using HepG2 cells. This study suggests that the effects of LPS on hepatic MT-I gene expression are mediated by IL-6 and involve the activation of STAT-binding to the proximal promoter.


Blood ◽  
2009 ◽  
Vol 113 (8) ◽  
pp. 1818-1828 ◽  
Author(s):  
Cyndi Wong ◽  
Yong Liu ◽  
Jana Yip ◽  
Rochna Chand ◽  
Janet L. Wee ◽  
...  

Abstract Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) is a surface glycoprotein expressed on various blood cells, epithelial cells, and vascular cells. CEACAM1 possesses adhesive and signaling properties mediated by its intrinsic immunoreceptor tyrosine-based inhibitory motifs that recruit SHP-1 protein-tyrosine phosphatase. In this study, we demonstrate that CEACAM1 is expressed on the surface and in intracellular pools of platelets. In addition, CEACAM1 serves to negatively regulate signaling of platelets by collagen through the glycoprotein VI (GPVI)/Fc receptor (FcR)–γ-chain. ceacam1−/− platelets displayed enhanced type I collagen and GPVI-selective ligand, collagen-related peptide (CRP), CRP-mediated platelet aggregation, enhanced platelet adhesion on type I collagen, and elevated CRP-mediated alpha and dense granule secretion. Platelets derived from ceacam1−/− mice form larger thrombi when perfused over a collagen matrix under arterial flow compared with wild-type mice. Furthermore, using intravital microscopy to ferric chloride-injured mesenteric arterioles, we show that thrombi formed in vivo in ceacam1−/− mice were larger and were more stable than those in wild-type mice. GPVI depletion using monoclonal antibody JAQ1 treatment of ceacam1−/− mice showed a reversal in the more stable thrombus growth phenotype. ceacam1−/− mice were more susceptible to type I collagen–induced pulmonary thromboembolism than wild-type mice. Thus, CEACAM1 acts as a negative regulator of platelet-collagen interactions and of thrombus growth involving the collagen GPVI receptor in vitro and in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3266-3266
Author(s):  
Yasuaki Shida ◽  
Christine Brown ◽  
Jeff Mewburn ◽  
Kate Sponagle ◽  
Ozge Danisment ◽  
...  

Abstract Abstract 3266 Von Willebrand Factor (VWF) is a large multimeric glycoprotein that mediates platelet adhesion to the damaged blood vessel wall and subsequent platelet aggregation at the site of injury. Rare mutations in the VWF A3 domain, that disrupt collagen binding, have been found in patients with a mild bleeding phenotype. However, the analysis of these aberrant VWF-collagen interactions has been relatively limited. Thus, in this study, we have developed mouse models of collagen binding mutants and analyzed the function of the A3 and A1 domains using comprehensive in vitro and in vivo approaches. All of the collagen binding variant AAs are conserved in mice. 6 loss-of-function (S1731T, W1745C, S1783A, H1786D, A1 deletion, A3 deletion) and 1 gain-of-function (L1757A) variant was generated in the context of the mouse VWF cDNA. The 4 loss-of-function missense mutants have all been described in patients with mild bleeding phenotypes. The recombinant mouse VWFs (rmVWF) were synthesized in HEK293T cells and analyzed for type I and III collagen binding in both a static assay (CBA) and a flow-based assay at 2,500s−1 in which VWF is bound to collagen on a surface, and labeled platelet adhesion is quantified. The multimer profile of all the rmVWFs was normal. The expression level of the rmVWF derived from HEK293T cells was quantified. W1745C and the A3 deletion showed significantly lower levels of expression and the A1 deletion mutant showed strong intracellular retention. In the static collagen binding assay, S1731T showed almost normal binding to collagen type I and a 50% reduction in binding to collagen type III. The other 3 missense variants, W1745C, S1783A and H1786D, showed reduced binding to both collagens I and III, and the A3 deletion mutant showed absent binding. In the in vitro flow assay, the sensitivity to detect defects in collagen binding was superior to the static assay, although the patterns of binding defects were similar. W1745C showed similar low levels of platelet adhesion to both types of collagen, while S1783A and H1786D showed a lack of platelet binding on the collagen III surface similar to the A3 deletion mutant, and a reduced binding to collagen type I similar to W1745C. The gain-of-function mutant showed consistent enhanced collagen binding and platelet adhesion in the static and flow assays, respectively. In vivo studies delivered the mVWF cDNAs with a strong liver specific promoter by hydrodynamic injection. At 7 days post-delivery, the VWF:Ag levels in the WT and collagen binding variant mice were similar, apart from the W1745C mutant, that showed 14.6% levels compared to WT. Platelet counts and multimer patterns were normal with the collagen binding variants. In vivo intravital microscopy studies were performed using the cremaster arteriolar model when VWF levels were in a physiological range. Thrombosis was induced by 10%FeCl3 applied for 3 mins. Platelets were labeled in vivo by Rhodamine 6G and the thrombus development was analyzed by spinning disc confocal microscopy. Loss-of-function mutants showed transient platelet adhesion at the site of injury, however the adhesion was unstable and vessel occlusion was not observed. Using three complementary experimental systems we have been able to confirm the collagen binding defects in this group of variant VWFs. There is a differential sensitivity to the two forms of collagen and of the three experimental systems. The A3 deletion mutant consistently resulted in the most severe phenotype while the missense mutants showed variable degrees of functional deficit. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1266-1273 ◽  
Author(s):  
Yann Cheli ◽  
Deborah Jensen ◽  
Patrizia Marchese ◽  
David Habart ◽  
Tim Wiltshire ◽  
...  

Abstract Platelet glycoprotein VI (GPVI) is a key receptor for collagens that mediates the propagation of platelet attachment and activation. Targeted disruption of the murine gene Gp6 on a mixed 129 × 1/SvJ × C57BL/6J background causes the expected defects in collagen-dependent platelet responses in vitro. The extent of this dysfunction in all Gp6−/− mice is uniform and is not affected by genetic background. However, the same Gp6−/− mice exhibit 2 diametrically opposed phenotypes in vivo. In some mice, tail bleeding times are extremely prolonged, and thrombus formation in an in vivo carotid artery ferric chloride-injury model is significantly impaired. In other littermates, tail bleeding times are within the range of wild-type mice, and in vivo thrombus formation is indistinguishable from that of control mice. Directed intercrosses revealed that these phenotypes are heritable, and a genome-wide single-nucleotide polymorphism scan revealed the most significant linkage to a single locus (8 megabases) on chromosome 4 (logarithm of the odds [LOD] score = 6.9, P < .0001) that we designate Modifier of hemostasis (Mh). Our results indicate that one or more modifier genes in Mh control the extent to which in vivo platelet thrombus formation is disrupted by the absence of platelet GPVI.


2020 ◽  
pp. 40-50
Author(s):  
A. Nikitina

Analysis of literature data presented in search engines — Elibrary, PubMed, Cochrane — concerning the risk of developing type I allergic reactions in patients with blood diseases is presented. It is shown that the most common cause of type I allergic reactions is drugs included in the treatment regimens of this category of patients. The article presents statistics on the increase in the number of drug allergies leading to cases of anaphylactic shock in patients with blood diseases. Modern methods for the diagnosis of type I allergic reactions in vivo and in vitro are considered.


2019 ◽  
Vol 18 (9) ◽  
pp. 1289-1294 ◽  
Author(s):  
Kusum Vats ◽  
Rohit Sharma ◽  
Haladhar D. Sarma ◽  
Drishty Satpati ◽  
Ashutosh Dash

Aims: The urokinase Plasminogen Activator Receptors (uPAR) over-expressed on tumor cells and their invasive microenvironment are clinically significant molecular targets for cancer research. uPARexpressing cancerous lesions can be suitably identified and their progression can be monitored with radiolabeled uPAR targeted imaging probes. Hence this study aimed at preparing and evaluating two 68Ga-labeled AE105 peptide conjugates, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 as uPAR PET-probes. Method: The peptide conjugates, HBED-CC-AE105-NH2 and NODAGA-AE105-NH2 were manually synthesized by standard Fmoc solid phase strategy and subsequently radiolabeled with 68Ga eluted from a commercial 68Ge/68Ga generator. In vitro cell studies for the two radiotracers were performed with uPAR positive U87MG cells. Biodistribution studies were carried out in mouse xenografts with the subcutaneously induced U87MG tumor. Results: The two radiotracers, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 that were prepared in >95% radiochemical yield and >96% radiochemical purity, exhibited excellent in vitro stability. In vivo evaluation studies revealed higher uptake of 68Ga-HBED-CC-AE105 in U87MG tumor as compared to 68Ga-NODAGAAE105; however, increased lipophilicity of 68Ga-HBED-CC-AE105 resulted in slower clearance from blood and other non-target organs. The uPAR specificity of the two radiotracers was ascertained by significant (p<0.05) reduction in the tumor uptake with a co-injected blocking dose of unlabeled AE-105 peptide. Conclusion: Amongst the two radiotracers studied, the neutral 68Ga-NODAGA-AE105 with more hydrophilic chelator exhibited faster clearance from non-target organs. The conjugation of HBED-CC chelator (less hydrophilic) resulted in negatively charged 68Ga-HBED-CC-AE105 which was observed to have high retention in blood that decreased target to non-target ratios.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


Sign in / Sign up

Export Citation Format

Share Document