Controlling Hematopoiesis through Sumoylation-Dependent Regulation of a GATA Factor.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1467-1467
Author(s):  
Hsiang-Ying Lee ◽  
Kirby D. Johnson ◽  
Tohru Fujiwara ◽  
Meghan E. Boyer ◽  
Shin-Il Kim ◽  
...  

Abstract Abstract 1467 Poster Board I-490 GATA factors function via distinct modes to establish transcriptional networks that control fundamental developmental processes including hematopoiesis. Whereas the master regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 activity at endogenous loci is poorly understood. GATA-1 is sumoylated at K137, which resides in the N-terminus, but how the N-terminus contributes to GATA-1 function remains unclear. Expression of a GATA-1 mutant lacking amino acids 1-83 of the N-terminus is linked to the development of acute megakaryoblastic leukemia [Wechsler et al. (2002) Nat. Genet. 32, 148], and deletion of the N-terminus preferentially deregulates a subset of target genes [Johnson et al. (2006) PNAS. 103, 15939]. We demonstrate that sumoylation at K137 promotes transcriptional activation only at a subset of its target genes – those requiring the cell type-specific coregulator, Friend of GATA-1 (FOG-1). Interestingly, a GATA-1 mutation that disrupts FOG-1 binding (V205G) and K137 mutations yielded similar phenotypes, although FOG-1 was not required for K137 sumoylation. Both V205 and K137 mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent target gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes localized at the periphery independent of maturation. These results illustrate how sumoylation of a critical developmental regulator selectively controls its function at specific loci, and members of a target gene ensemble with distinct coregulator and posttranslational modification requirements reside in different subnuclear compartments. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1748-1748
Author(s):  
Kirby D. Johnson ◽  
Saumen Pal ◽  
Jeffrey A. Grass ◽  
Emery H. Bresnick

Abstract The transcription factor GATA-1 is a key regulator of red cell differentiation, activating numerous erythroid-specific genes while downregulating genes that permit proliferation of erythroid precursors. We have demonstrated that GATA-1 only occupies a limited number of the high affinity WGATAR motifs present within target gene loci, FOG-1 is required for GATA-1 to occupy a subset of chromatin sites, and GATA-1 occupancy often coincides with GATA-2 displacement or a “GATA switch”. Once bound, GATA-1 elicits changes in the histone modification patterns and the three dimensional structure of target gene loci via recruitment of cofactors such as FOG-1 and CBP. As detailed mechanistic studies have not been conducted with most GATA-1 target genes, it is unclear whether these genes are equally sensitive to GATA-1 or if they respond differently to the rising GATA-1 levels during erythropoiesis. Using GATA-1 fusions to the estrogen receptor ligand binding domain (ER-GATA-1) in the GATA-1-null erythroid precursor cell line, G1E, we analyzed the responses of endogenous GATA-1 target genes to varied levels of GATA-1 activity. We found that transcriptional activation of Tac-2 required higher concentrations of ER-GATA-1 than is required for other GATA-1 target genes. Previously, we showed that Tac-2, which encodes the neurokinin-B precursor protein preprotachykinin B, is regulated by GATA-1 in erythroid cell lines and is induced upon ex vivo differentiation of human CD34+ peripheral blood cells. Importantly, whereas regulation of many GATA-1 target genes is only partially disrupted by removal of the N-terminal 193 amino acids from ER-GATA-1 (ER-GATA-1 ΔN), Tac-2 expression was very sensitive to this truncation. Whereas NK-B signals through G-protein-coupled receptors to modulate neuronal function, its functions beyond the nervous system are poorly understood. Although erythroid cells do not express NK-B receptors, the receptors, but not NK-B, are expressed in certain endothelial cell subtypes, and elevated levels of NK-B are implicated in the pregnancy-associated disorder pre-eclampsia. Tac-2 represents the first GATA-1 target gene that critically requires the N-terminus. Studies are underway to elucidate mechanisms underlying the exquisite sensitivity of Tac-2 to deletion of the GATA-1 N-terminus, the relationship between Tac-2 deregulation and GATA-1 N-terminal deletions in megakaryoblastic leukemia, and the function of erythroid cell-derived NK-B.


2016 ◽  
Vol 21 (7) ◽  
pp. 680-688 ◽  
Author(s):  
Si Ho Choi ◽  
Darko Bosnakovski ◽  
Jessica M. Strasser ◽  
Erik A. Toso ◽  
Michael A. Walters ◽  
...  

Facioscapulohumeral muscular dystrophy is a genetically dominant, currently untreatable muscular dystrophy. It is caused by mutations that enable expression of the normally silent DUX4 gene, which encodes a pathogenic transcription factor. A screen based on Tet-on DUX4-induced mouse myoblast death previously uncovered compounds from a 44,000-compound library that protect against DUX4 toxicity. Many of those compounds acted downstream of DUX4 in an oxidative stress pathway. Here, we extend this screen to an additional 160,000 compounds and, using greater stringency, identify a new set of DUX4-protective compounds. From 640 hits, we performed secondary screens, repurchased 46 of the most desirable, confirmed activity, and tested each for activity against other cell death–inducing insults. The majority of these compounds also protected against oxidative stress. Of the 100 repurchased compounds identified through both screens, only SHC40, 75, and 98 inhibited DUX4 target genes, but they also inhibited dox-mediated DUX4 expression. Using a target gene readout on the 640-compound hit set, we discovered three overlooked compounds, SHC351, 540, and 572, that inhibit DUX4 target gene upregulation without nonspecific effects on the Tet-on system. These novel inhibitors of DUX4 transcriptional activity may thus act on pathways or cofactors needed by DUX4 for transcriptional activation in these cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3668-3668
Author(s):  
Koichi Ricardo Katsumura ◽  
Chenxi Yang ◽  
Jing Zhang ◽  
Lingjun Li ◽  
Kirby D Johnson ◽  
...  

Abstract Recent studies have demonstrated a role for the master regulator of hematopoiesis GATA-2 in MonoMAC Syndrome, a human immunodeficiency disorder associated with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Though GATA2 coding region and cis-regulatory element mutations underlie MonoMAC syndrome, many questions remain unanswered regarding how GATA-2 is controlled physiologically and how it is dysregulated in pathological contexts. We dissected how a T354M mutation in the GATA-2 DNA binding zinc finger, which is frequently detected in MonoMAC syndrome and familial MDS/AML, alters GATA-2 activity. The T354M mutation reduced GATA-2 chromatin occupancy, induced GATA-2 hyperphosphorylation, and disrupted GATA-2 subnuclear localization. These molecular phenotypes also characterized an additional familial MDS/AML-associated GATA-2 mutant (Δ355T). T354M hyperphosphorylation and ectopic subnuclear localization were detected in hematopoietic and non-hematopoietic cell lines. We developed a new model system in mouse aortic endothelial (MAE) cells to quantitate GATA-2 activity to regulate endogenous target genes. T354M exhibited significantly reduced activity in this assay (GATA-2: 200-fold activation; T354M: 7.7-fold activation). Mass spectrometric analysis of the phosphorylation states of GATA-2 and T354M revealed that the T354M mutation enhanced phosphorylation at several GATA-2 residues. Analysis of single phosphorylation site mutants indicated that only mutation of S192 (S192A) abolished T354M-induced hyperphosphorylation. The S192A mutation attenuated phosphorylation of sites within wild-type GATA-2 and reduced transactivation activity (50% decrease, p < 0.01). A distinct 60 amino acid (aa) region within the GATA-2 N-terminus was required for T354M hyperphosphorylation and ectopic subnuclear localization. Deletion of this sequence decreased GATA-2 transactivation activity (60 aa deletion: 85% decrease, p < 0.01; 10 aa deletion: 45% decrease, p < 0.05). GATA-1 lacks an analogous subnuclear targeting sequence, and accordingly, a GATA-1(T263M) mutant, which corresponds to the GATA-2(T354M) mutant, localized normally and was not hyperphosphorylated. However, a GATA-1 chimera containing the GATA-2 subnuclear targeting sequence localized to ectopic subnuclear foci in a T263M-dependent manner. The GATA-2 N-terminus endowed GATA-1 with the capacity to induce GATA-2 target genes. By contrast, a GATA-2 chimera containing the GATA-1 N-terminus exhibited normal subnuclear localization. Thus, the leukemogenic T354M mutation utilizes the GATA-2-specific subnuclear targeting sequence to disrupt the normal subnuclear localization pattern, and this disruption is associated with S192-dependent hyperphosphorylation. In addition to its involvement in AML, GATA-2 interfaces with RAS signaling to promote the development of non-small cell lung cancer. We discovered that RAS signaling promotes S192-dependent GATA-2 hyperphosphorylation and ectopic subnuclear localization and propose that GATA-2 is an important component in oncogenic RAS-dependent leukemogenesis, which is being formally tested using innovative mouse models. In summary, dissecting the mechanistic deficits of a leukemogenic GATA-2 mutant revealed unexpected insights into mechanisms underlying physiological GATA-2 function and GATA-2-dependent hematologic pathologies. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 20 (14) ◽  
pp. 5343-5349 ◽  
Author(s):  
J. Cliff Yoon ◽  
Troy W. Chickering ◽  
Evan D. Rosen ◽  
Barry Dussault ◽  
Yubin Qin ◽  
...  

ABSTRACT The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1228-1228
Author(s):  
Yanan Li ◽  
Riddhi M Patel ◽  
Emily Casey ◽  
Jeffrey A. Magee

The FLT3 Internal Tandem Duplication (FLT3ITD) is common somatic mutation in acute myeloid leukemia (AML). We have previously shown that FLT3ITD fails to induce changes in HSC self-renewal, myelopoiesis and leukemogenesis during fetal stages of life. FLT3ITD signal transduction pathways are hyperactivated in fetal progenitors, but FLT3ITD target genes are not. This suggests that postnatal-specific transcription factors may be required to help induce FLT3ITD target gene expression. Alternatively, repressive histone modifications may impose a barrier to FLT3ITD target gene activation in fetal HPCs that is relaxed during postnatal development. To resolve these possibilities, we used ATAC-seq, as well as H3K4me1, H3K27ac and H3K27me3 ChIP-seq, to identify cis-elements that putatively control FLT3ITD target gene expression in fetal and adult hematopoietic progenitor cells (HPCs). We identified many enhancer elements (ATAC-seq peaks with H3K4me1 and H3K27ac) that exhibited increased chromatin accessibility and activity in FLT3ITD adult HPCs relative to wild type adult HPCs. These elements were enriched near FLT3ITD target genes. HOMER analysis showed enrichment for STAT5, ETS, RUNX1 and IRF binding motifs within the FLT3ITD target enhancers, but motifs for temporally dynamic transcription factors were not identified. We cloned a subset of the enhancers and confirmed that they could synergize with their promoter to activate a luciferase reporter. For representative enhancers, STAT5 binding sites were required to activate the enhancer - as anticipated - and RUNX1 repressed enhancer activity. We tested whether accessibility or priming changed between fetal and adult stages of HPC development. FLT3ITD-dependent changes in chromatin accessibility were not observed in fetal HPCs, though the enhancers were primed early in development as evidenced by the presence of H3K4me1. Repressive H3K27me3 were not present at FLT3ITD target enhancers in either or adult HPCs. The data show that FLT3ITD target enhancers are demarcated early in hematopoietic development, long before they become responsive to FLT3ITD signaling. Repressive marks do not appear to create an epigenetic barrier to enhancer activation in the fetal stage. Instead, age-specific transcription factors are likely required to pioneer enhancer elements so that they can respond to STAT5 and other FLT3ITD effectors. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-30-SCI-30
Author(s):  
Jay L. Hess ◽  
Cailin Collins ◽  
Joel Bronstein ◽  
Yuqing Sun ◽  
Surya Nagaraja

Abstract Abstract SCI-30 HOXA9 plays important roles in both development and hematopoiesis and is overexpressed in more than 50 percent of acute myeloid leukemias (AML). Nearly all cases of AML with mixed lineage leukemia (MLL) translocations show increased HOXA9 expression, as well as cases with mutation of the nucleophosmin gene NPM1, overexpression of CDX2, and fusions of NUP98. In most cases, upregulation of HOXA9 is accompanied by upregulation of its homeodomain-containing cofactor MEIS1, which directly interacts with HOXA9. While HOXA9 alone is sufficient for transformation of hematopoietic stem cells in culture, the addition of MEIS1 increases the transformation efficiency and results in rapidly fatal leukemias in transplanted animals. Despite the crucial role that HOXA9 plays in development, hematopoiesis, and leukemia, its transcriptional targets and mechanisms of action are poorly understood. We have used ChIP-seq to identify Hoxa9 and Meis1 binding sites on a genome-wide level in myeloblastic cells, profiled their associated epigenetic modifications, identified the target genes regulated by HOXA9 and identified HOXA9 interacting proteins. HOXA9 and MEIS1 cobind at hundreds of promoter distal, highly evolutionarily conserved sites showing high levels of histone H3K4 monomethylation and CBP/P300 binding. These include many proleukemogenic gene loci, such as Erg, Flt3, Myb, Lmo2, and Sox4. In addition, HOXA9 binding sites overlap a subset of enhancers previously implicated in myeloid differentiation and inflammation. HOXA9 binding at enhancers stabilizes association of MEIS1 and lineage-restricted transcription factors, including C/EBPα, PU.1, and STAT5A/B thereby promoting CBP/p300 recruitment, histone acetylation, and transcriptional activation. Current efforts are focused on using both biochemical and genetic approaches to assess the role of HOXA9 “enhanceosome” components C/EBPα, PU.1, and STAT5A/B in transcriptional regulation and leukemogenesis. Studies to date suggest that C/EBPα and PU.1 binding can occur in the absence of HOXA9/MEIS1, supporting a model in which these proteins act as pioneer transcription factors for establishment of poised, but not activated, HOXA9-regulated enhancers. Work is under way to assess the impact of high-level HOXA9 and MEIS1 on enhanceosome assembly and the role of recruitment of transcriptional coactivators involved in target gene up- or downregulation, including histone acetyltransferases and chromatin remodeling complexes. Collectively, our findings suggest that HOXA9-regulated enhancers are a fundamental mechanism of HOX-mediated transcription in normal development that is deregulated in leukemia. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 403 (3) ◽  
pp. 511-518 ◽  
Author(s):  
Prabodh Sadana ◽  
Edwards A. Park

The PGC-1s (peroxisome-proliferator-activated receptor γ co-activators) are a family of transcriptional regulators that induce the expression of various metabolic genes. PGC-1 proteins stimulate genes involved in mitochondrial biogenesis, fatty acid oxidation and hepatic gluconeogenesis. Previous studies have demonstrated that the PGC-1α and β isoforms interact with nuclear receptors through the conserved LXXLL (leucine-X-X-leucine-leucine) motifs. In the present study, we have investigated the mechanisms by which these PGC-1 isoforms stimulate gene expression. We have determined that the N-terminus of PGC-1 is responsible for transcriptional activation. Two conserved peptide motifs were identified in the N-terminus of PGC-1α and β isoforms. These domains were named AD1 and AD2 (activation domain 1 and 2). Deletion of both of these motifs decreased the induction of various PGC-1-regulated genes including the PEPCK (phosphoenolpyruvate carboxykinase) and CPT-I (carnitine palmitoyltransferase-I) genes. It was determined that amino acids containing a negative charge in AD1 and the leucine residues in AD2 were important for the transcriptional induction of the PEPCK and CPT-I genes. Disruption of the AD motifs did not diminish the ability of the PGC-1α protein to associate with the PEPCK or CPT-I genes. In addition, deletion of the AD domains did not eliminate the ability of PGC-1α to interact with the thyroid hormone receptor. The data indicate that the AD1 and AD2 motifs mediate the induction of many PGC-1- responsive genes, but they do not contribute to the recruitment of PGC-1 to target genes.


2009 ◽  
Vol 23 (4) ◽  
pp. 466-474 ◽  
Author(s):  
Kang Ho Kim ◽  
Jeong Min Yoon ◽  
A Hyun Choi ◽  
Woo Sik Kim ◽  
Gha Young Lee ◽  
...  

Abstract Liver X receptor (LXR) is a ligand-activated transcription factor that plays important roles in cholesterol and lipid homeostasis. However, ligand-induced posttranslational modification of LXR is largely unknown. Here, we show that ligand-free LXRα is rapidly degraded by ubiquitination. Without ligand, LXRα interacts with an ubiquitin E3-ligase protein complex containing breast and ovarian cancer susceptibility 1 (BRCA1)-associated RING domain 1 (BARD1). Interestingly, LXR ligand represses ubiquitination and degradation of LXRα, and the interaction between LXRα and BARD1 is inhibited by LXR ligand. Consistently, T0901317, a synthetic LXR ligand, increased the level of LXRα protein in liver. Moreover, overexpression of BARD1/BRCA1 promoted the ubiquitination of LXRα and reduced the recruitment of LXRα to the target gene promoters, whereas BARD1 knockdown reversed such effects. Taken together, these data suggest that LXR ligand prevents LXRα from ubiquitination and degradation by detaching BARD1/BRCA1, which might be critical for the early step of transcriptional activation of ligand-stimulated LXRα through a stable binding of LXRα to the promoters of target genes.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3907-3907 ◽  
Author(s):  
Lev M Kats ◽  
Madison J Kelly ◽  
Gareth Gregory ◽  
Ricky W Johnstone ◽  
Stephin J Vervoort

Abstract Stem cell self-renewal and lineage specification are highly dynamic and tightly controlled processes that are essential for normal haematopoiesis and are dysregulated in cancer. The X-linked BCL6 Corepressor (BCOR) gene encodes a protein that is widely expressed across adult human tissues and is a component of a non-canonical Polycomb repressive complex 1 (PRC1). The BCOR gene is recurrently mutated in various malignant and non-malignant blood disorders, and we and others have recently provided experimental evidence that BCOR has cell-context dependent functions in regulating the proliferation, differentiation and survival of haematopoietic cells. To comprehensively examine the role of BCOR in haematopoiesis in vivo we used a conditional mouse model that mimics the truncating mutations observed in acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Using stem and progenitor populations isolated ex vivo we comprehensively analysed the role of BCOR in regulating gene expression, modifying chromatin and altering genome architecture. We demonstrate that BCOR has a pivotal role in down-regulating haematopoietic stem cell (HSC) associated transcriptional networks during the transition from multi-potent stem cells to lineage-committed myeloid progenitors. Inactivation of Bcor in HSCs results in expansion of myeloid progenitors and co-operates with oncogenic KrasG12D in the initiation of an aggressive and fully transplantable acute leukaemia. Mechanistically, Bcor regulates a subset of PRC1-target genes including key HSC super-enhancer-linked transcription factors that are normally down-regulated during myeloid differentiation. We used CRISPR/Cas9 to explore the function of Bcor target genes and identified those that are necessary for the proliferation of Bcor mutant leukaemic cells. This study provides a comprehensive mechanistic understanding of how BCOR regulates cell fate decisions and contributes to the development of leukaemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1316-1316
Author(s):  
John H. Bushweller ◽  
Charles Schmidt ◽  
Nicholas Achille ◽  
Aravinda Kuntimaddi ◽  
Adam Boulton ◽  
...  

Abstract The mixed lineage leukemia (MLL) protein is a histone methyltransferase that writes the histone H3 lysine 4 trimethyl (H3K4me3) mark at the promoters of target genes such as HOXA9 and MEIS1. MLL is the target of chromosomal translocations that fuse it in frame to one of over 90 partners, leading to acute myeloid and lymphoid leukemias (AML and ALL, respectively) characterized by poor prognoses1. MLL fusions activate transcription by recruiting the AF4 family/ENL family/P-TEFb (AEP) complex and the DOT1L-AF10 family-ENL family complex (DOT1L complex or DotCom). Transcriptional activation via AF4 recruitment and transcriptional maintenance via DOT1L recruitment are required for MLL leukemias. Despite the large number of fusion partners, members of the AEP complex account for nearly 70% of MLL rearrangements1. These fusions constitutively activate MLL targets by bypassing recruitment via ENL (MLLT1) and AF9 (MLLT3) YEATS domain binding to crotonylated or acetylated histone H3. The AF9 ANC1 homology domain (AHD), retained in MLL fusions, is intrinsically disordered, but undergoes coupled folding and binding upon interaction with its binding proteins2. The AHD recruits AF4 and DOT1L, which support transcriptional elongation, as well as the BCL6 corepressor (BCOR) and chromobox homolog 8 (CBX8), which are implicated in transcriptional repression. CBX8 (HPC3) is a mammalian ortholog of Drosophila polycomb that binds trimethylated histone H3 lysine 9 and 27 (H3K9me3 and H3K27me3) with variable affinity. Previous reports indicate CBX8 is required for MLL-AF9 and MLL-ENL. BCOR is a transcriptional corepressor that augments BCL6-mediated repression. The BCL6 POZ domain forms a ternary complex with BCOR and SMRT, repressing targets via recruitment of PRC1.1 and HDAC3. BCOR translocations and mutations have been found in a range of cancers. Although it is broadly expressed throughout the hematopoietic system (Bloodspot), little is known about BCOR function in hematopoiesis. Recently, BCOR was shown to have a role in maintenance of human embryonic stem cell pluripotency. BCOR has also been implicated in regulation of myeloid cell proliferation and differentiation and is necessary for MLL-AF9 leukemogenesis. While the roles of the direct MLL-AF9/AF4 and MLL-AF9/DOT1L interactions have been the subject of previous structural and functional studies2-4, the roles of the direct interactions of MLL-AF9 with CBX8 and BCOR remain relatively uncharacterized. We determined the structures of the AF9 AHD-CBX8 and AF9 AHD-BCOR complexes. Based on the structures, we developed point mutants to increase and decrease affinity of CBX8 for AF9. Increased affinity decreased colony forming ability and induced differentiation of MLL-AF9-transformed cells, while decreased affinity had no effect. An additional point mutant was developed to selectively disrupt BCOR binding to AF9. In the context of MLL-AF9, this mutant increases proliferative ability without an effect on colony formation and is unable to cause leukemia in vivo. RNAseq analysis reveals that this mutant affects a different set of genes than loss of DOT1L or AF4 binding or gain of CBX8 binding, leading to a phenotype distinct from that seen with perturbation of other AF9 interactions, functionally distinguishing proliferative capacity from in vivo leukemogenesis. In particular, substantial effects were observed on EYA1 expression, suggesting a critical role for the EYA1/SIX gene network in MLL-AF9 leukemia. 1 Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia32, 273-284, doi:10.1038/leu.2017.213 (2018). 2 Leach, B. I. et al. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure21, 176-183, doi:10.1016/j.str.2012.11.011 (2013). 3 Kuntimaddi, A. et al. Degree of recruitment of DOT1L to MLL-AF9 defines level of H3K79 Di- and tri-methylation on target genes and transformation potential. Cell reports11, 808-820, doi:10.1016/j.celrep.2015.04.004 (2015). 4 Lokken, A. A. et al. Importance of a specific amino acid pairing for murine MLL leukemias driven by MLLT1/3 or AFF1/4. Leukemia research38, 1309-1315, doi:10.1016/j.leukres.2014.08.010 (2014). Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document