Stress Response Gadd45a Gene as Tumor Suppressor in MYC Expressing Myeloid Cells Is Cytokine Specific.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1481-1481
Author(s):  
Alisha A Mohamed-Hadley ◽  
Dan A. Liebermann ◽  
Barbara Hoffman

Abstract Abstract 1481 Poster Board I-504 MYC, which regulates proliferation, apoptosis/survival and differentiation, is implicated in the etiology of a wide variety of hematologic malignancies. Multiple cooperating molecular pathways of cell survival and apoptosis determine if a cell lives or dies, and understanding how c-MYC interfaces with these pathways to influence the survival of cells is important to understand tumor initiation and progression, and response of tumors to different treatment regimens. Previously, this laboratory has shown that deregulated c-MYC blocks terminal myeloid differentiation and prematurely recruits both the Type I and Type II CD95/Fas apoptotic pathways, promoting an incompletely penetrant apoptotic response (Amanullah et al., Oncogene 19:2967-77, 2000; Amanullah et al., Oncogene 21;1600-10, 2002). Here we provide data to show that the response of myeloid cells to deregulated MYC expression depends on the status of the Gadd45 family of stress response genes. The gadd45 gene family plays pivotal roles as stress sensors that modulate signaling in response to physiological and environmental stressors, also modulating susceptibility of cells for transformation in vitro and tumor development in vivo. Gadd45 behaves as either tumor suppressor or oncogene depending upon the transforming oncogene and the cell type (Tront et al., Cancer Research 66:8448-54, 2006; Tront et al., manuscript in press). To elucidate the role Gadd45a plays in response to the proto-oncogene c-MYC in myeloid cells, bone marrow (BM) cells from wild type (WT) and Gadd45a null mice were retrovirally infected to constitutively express c-MYC. We showed that Gadd45a null BM expressing constitutive c-MYC exhibited less apoptosis than its WT counterpart in expansion media (IL-3, IL-6, SCF), demonstrating that Gadd45a is required for optimal MYC mediated apoptosis. In addition, enhancement of cell cycle progression was observed. Therefore, loss of gadd45a in conjunction with constitutive MYC expression results in enhanced proliferation. Furthermore, in GM-CSF treated cells the MYC–mediated block/delay in differentiation was more extensive in the Gadd45a null cells compared to similarly treated WT cells. Interestingly, the percent of apoptosis was higher in the Gadd54a null cells expressing constitutive MYC as compared to the WT counterpart. This observation was in contrast to the results seen in expansion media, suggesting that the role Gadd45a plays in the presence of deregulated MYC may be cytokine specific. Data will be presented to explain how gadd45 regulates both the apoptotic response, depending upon the specific cytokine, and differentiation of MYC-expressing myeloid cells. Furthermore, experiments to determine how loss of gadd45a influences MYC-mediated leukemia, including assessing the effect of manipulating the cytokine milieu, are currently underway. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1556-1556
Author(s):  
Alisha A Mohamed-Hadley ◽  
Dan Liebermann

Abstract Abstract 1556 c-MYC, which can promote cell cycle progression, genomic instability, and block differentiation, is among the most frequently affected genes in human cancers, making this oncoprotein and its down-stream effectors attractive targets for drug discovery. MYC triggered apoptosis provides a built in failsafe program to limit unchecked cell growth when expressed in inappropriate conditions, ensuring that it is restricted to the correct environment. Tumors from cells over-expressing c-MYC often have mutations that disable the apoptotic program. The ramifications with regard to tumor etiology and progression, as well as the response of malignancies to different therapies has been tremendously enhanced by many studies involving the identification of targets involved in the MYC-triggered apoptotic response and on the flip side, identifying which apoptotic regulators are disabled in tumor cells. Many questions still remain to be answered. The biological and genetic setting appears to determine how a cell responds to altered MYC expression. The gadd45 gene family plays pivotal roles as stress sensors that modulate signaling in response to physiological and environmental stressors, also modulating susceptibility of cells for transformation in vitro and tumor development in vivo. Gadd45 behaves as either tumor suppressor or oncogene depending upon the transforming oncogene and the cell type (Tront et al., Cancer Research 66:8448-54, 2006; Tront et al., Cancer Research, in press). To elucidate the role Gadd45a plays in response to the proto-oncogene c-MYC in myeloid cells, bone marrow (BM) cells from wild type (WT) and Gadd45a null mice were retrovirally infected to constitutively express c-MYC. We observed that the response of myeloid cells to deregulated MYC expression depends on the status of the Gadd45 family of stress response genes. We showed that Gadd45a null BM expressing constitutive c-MYC exhibited less apoptosis than its WT counterpart in expansion media (IL-3, IL-6, SCF), demonstrating that Gadd45a is required for optimal MYC mediated apoptosis. We have clarified that there is no apparent enhancement of cell cycle progression; therefore, loss of gadd45a in conjunction with constitutive MYC expression results in decreased apoptosis with no effect on cell proliferation. Next we determined that the stress response Gadd45a gene functions as a tumor suppressor when MYC is deregulated in myeloid cells, via decreased expression of phospho-p38 MAPK, and the concomitant reduction of both activated phospho-PU.1 and the anti-apoptotic protein, MCL-1. MYC infected cells proliferating in GM-CSF differentiating media displayed a similar block/delay in differentiation regardless of gadd45a status. Interestingly, the percent of apoptosis was higher in the Gadd45a null cells expressing constitutive MYC as compared to the WT counterpart, which appears after cells are maintained in culture. Data is consistent with loss of Gadd45a being associated with diminished GM-CSF receptors, which can account for the increased apoptosis. Experiments will be presented to explain how Gadd45a regulates the apoptotic response, depending upon the specific cytokine. Finally, experiments are underway to assess how loss of Gadd45a in vivo can impact on MYC-mediated leukemia using in vivo mouse models and primary human AML BM. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 205 (8) ◽  
pp. 1929-1938 ◽  
Author(s):  
César Muñoz-Fontela ◽  
Salvador Macip ◽  
Luis Martínez-Sobrido ◽  
Lauren Brown ◽  
Joseph Ashour ◽  
...  

Tumor suppressor p53 is activated by several stimuli, including DNA damage and oncogenic stress. Previous studies (Takaoka, A., S. Hayakawa, H. Yanai, D. Stoiber, H. Negishi, H. Kikuchi, S. Sasaki, K. Imai, T. Shibue, K. Honda, and T. Taniguchi. 2003. Nature. 424:516–523) have shown that p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Moreover, many viruses, including SV40, human papillomavirus, Kaposi's sarcoma herpesvirus, adenoviruses, and even RNA viruses such as polioviruses, have evolved mechanisms designated to abrogate p53 responses. We describe a novel p53 function in the activation of the IFN pathway. We observed that infected mouse and human cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling, specifically the induction of genes containing IFN-stimulated response elements. Of note, p53 also contributed to an increase in IFN release from infected cells. We established that this p53-dependent enhancement of IFN signaling is dependent to a great extent on the ability of p53 to activate the transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Our results demonstrate that p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3347-3347
Author(s):  
Sylvia Takacova ◽  
Jiri Bartek ◽  
Lucie Piterkova ◽  
Robert K. Slany ◽  
Vladimir Divoky

Abstract Mixed Lineage Leukemia (MLL) mutations identify a unique group of acute leukemias with distinct biological and clinical features. Although the role of MLL in leukemogenesis has been extensively studied, a precise mechanism regarding the leukemogenic potential of MLL mutations is not known. We generated a switchable MLL-ENL-ERtm mouse model, in which the MLL-ENL oncogene has been introduced by homologous recombination and is controlled by the endogenous MLL promoter, thus, expressed at physiological levels. Due to fusion with the estrogen receptor ligand binding domain (ERtm), the MLL-ENL-ERtm protein activity is dependent on continuous provision of tamoxifen or 4-hydroxytamoxifen. The MLL-ENL-ERtm mice have developed a myeloproliferative disorder (MPD) characterized by persistent mature neutrophilia after 484,5 +/− 75,68 days of latency on a tamoxifen diet, in association with high white cell counts in peripheral blood, splenomegaly and occasionally with anemia. Blood smears showed large numbers of mature myeloid elements consisting of 40–80% neutrophils (non-segmented forms in abundance), admixed with immature myeloid elements, 3–11% monocytes and 2–6% myeloblasts. The phenotype of MPD also involved myelomonocytic proliferation with 35% immature monocytic cells in one animal and severe anemia with increased numbers of immature erythroid cells in peripheral blood in another animal. Hematoxylin- and eosin-stained sections of the bone marrow from MLL-ENL-ERtm mice revealed expansion of myeloid cell population with no signs of progressive dysplasia. We observed massive infiltration of myeloid cells (positive for myeloperoxidase) into spleen with various degree of loss of normal splenic architecture depending on disease progression. FACS profiles of both bone marrow and spleen cells showed a typical pattern of granulocyte/macrophage/monocyte surface marker expression (CD34-CD43+Mac- 1+Gr-1+CD16/32+). In vitro evaluation of hematopoetic progenitors derived from bone marrow of leukemic mice at the terminal stage of the disease revealed decreased numbers of BFU-Es and increased numbers of CFU-GMs and CFU-Gs compared to matched controls. These results correlated with the expansion of the myelomonocytic and reduction of the erythroid compartment observed in the bone marrow of these animals. The average size (cellularity) of the mutant myeloid colonies was much smaller than the colonies derived from the wild-type controls, which could be caused by a partial block of terminal differentiation of myeloid progenitors in vitro. In vivo, MLL-ENL leads to expansion of differentiated myeloid cells in our model. High penetrance and long latency of leukemia in our model permits the study of early leukemia development. Our model revealed that MLL-ENL - induced myeloproliferation occurs as early as twelve weeks after MLL-ENL-ERtm activation in the bone marrow and infiltrates the spleen with a consequent decrease in lymphoid B220+CD19+IgM+ cells. Using the TUNEL assay on bone marrow sections, we observed induction of apoptosis in the highly proliferative bone marrow compartment compared to matched controls. These results suggest activation of a potential tumor suppressor mechanism by MLL-ENL in early stages of leukemia. We are currently investigating potential tumor suppressor pathways that might be involved in MLL-ENL - induced apoptosis in preleukemia.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Thao Trinh ◽  
James Ropa ◽  
Arafat Aljoufi ◽  
Scott Cooper ◽  
Edward F. Srour ◽  
...  

The hematopoietic system is maintained by the hematopoetic stem and progenitor cells (HSCs/HPCs), a group of rare cells that reside in a hypoxic bone marrow (BM) microenvironment. Leptin (Lep) is well-known for its neuroendocrine and immunological functions, and its receptor (Lepr) has been studied extensively in the BM niche cells. Yet, its biological implications in HSC/HPC biology remained largely unknown. In this study, we hypothesized that Lepr-expressing HSCs/HPCs are functionally and transcriptomically distinct from their negative counterparts. To test our hypothesis, we utilized both in vitro and in vivo approaches. We first employed Fluorescence-activated cell sorting (FACS) analysis to confirm expression of Lepr on HSCs/HPCs in adult mouse BM. We then isolated equal numbers of Lepr+Lineage-Sca1+cKit+ (LSK cells - a heterogenous population of long-term, short-term HSCs and multipotent HPCs) and Lepr-LSK cells from C57BL/6 (CD45.2+) mouse BM to perform colony-forming unit (CFU) assay and competitive transplantation assay, which also included using competitor cells from BoyJ (CD45.1+) unseparated BM and lethally-irradiated F1 (CD45.1+CD45.2+) as hosts. To determine whether Lepr can further hierarchize HSCs into two distinct populations, we repeated the competitive transplants using freshly isolated C57BL/6 Lepr+HSCs or Lepr-HSCs cells instead. At the end of primary transplants, whole BM were analyzed for donor chimerisms in the peripheral blood (PB) and BM as well as transplanted in a non-competitive fashion into lethally-irradiated secondary recipients. To gain mechanistic insights, we assessed homing potential as homing plays a role in increased engraftment. We also performed bulk RNA-seq using freshly sorted BM Lepr+HSCs or Lepr-HSCs to elucidate potential molecular pathways that are responsible for the differences in their functional capacity. By phenotypic studies, our FACS analyses showed that Lepr+ cells represented a smaller population within the hematopoietic compartment in the BM. However, HSCs contained a higher percentage of Lepr+ cells than other HPC populations. By functional assessments, Lepr+LSK cells were more highly enriched for colony-forming progenitor cells in CFU assay as compared to Lepr-LSK cells. Interestingly, Lepr+LSK cells exhibited more robust engraftment capability in primary transplants and substantial self-renewal capacity in secondary transplants throughout different time points in both PB and BM. In addition, Lepr+HSCs showed significantly higher donor chimerisms in PB month 1, 2, 4 and BM month 4 with similar lineage output compared to Lepr-HSCs. Higher engraftment could be due to increased homing of HSCs to the BM; however, Lepr+HSCs and Lepr-HSCs showed similar homing capacity as well as levels of surface CXCR4 expression. Molecularly, Fast Preranked Gene Set Enrichment Analysis (FGSEA) showed that Lepr+HSCs were enriched for Type-I Interferon and Interferon-gamma response pathways with Normalized Enrichment Scores of 2 or higher. Lepr+HSC transcriptomic study also revealed that these cells as compared to Lepr-HSCs expressed significantly higher levels of genes involved in megakaryopoiesis and proinflammatory immune responses including the NF-κB subunits (Rel and Relb). Interestingly, both IFN-γ and NF-κB signalings have been demonstrated to be critical for the emergence of HSCs from the hemogentic endothelium during embryonic development. In summary, although Lepr+LSK cells occupied a minor fraction compared to their negative counterparts in the BM, they possessed higher colony-forming capacity and were more highly enriched for long-term functional HSCs. In line with this, Lepr+HSCs engrafted significantly higher and self-renewed more extensively than Lepr-HSCs, suggesting that Lepr not only can be used as a marker for functional HSCs but also further differentiate HSCs into two functionally distinguishable populations. Intriguingly, Lepr+HSCs were characterized with a proinflammatory transcriptomic profile that was previously suggested to be critical for the development of HSCs in the embryo. All together, our work demonstrated that Lepr+HSCs represent a subset of highly engrafting adult BM HSCs with an embryonic-like transcriptomic signature. This can have potential therapeutic implications in the field of hematopoietic transplantation as Lepr is highly conserved between mice and human. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3066-3066
Author(s):  
Tekla Hornakova ◽  
Sabina Chiaretti ◽  
Muriel Lemaire ◽  
Robin Foà ◽  
Marco Tartaglia ◽  
...  

Abstract Abstract 3066 Poster Board III-3 Recently, we and others reported activating mutations in JAK1 in acute lymphoblastic leukemia (ALL). These mutations are relatively common in adult patients with T cell ALL. JAK1 is a tyrosine kinase that associates to different cytokine receptors to mediate signal transduction. The associations of the mutant JAK1 with receptors like IL-2R or IL-9R are necessary to promote tumorigenicity by inducing constitutive signaling via the activation of the receptor complex. Because JAK1 mutations confer poor prognosis to the patients, there is a need for new therapies that could specifically target the leukemic blast. Starting from patient samples, we show here that JAK1-mutant ALL blasts are characterized by a type-I interferon (IFN) transcriptional signature. This signature was recapitulated in vitro by the expression of JAK1 mutants in BW5147 and BaF3 hematopoietic cell lines. Binding of JAK1 to the IFN receptor was essential since mutations in the FERM domain abrogated this effect. Beside the constitutive activation of the type I IFN signaling cascade, JAK1 mutations also strongly potentiated the response to IFN in vitro. Typically, the proliferation of cell lines expressing JAK1A634D was abrogated by type I IFNs. Interestingly, we found that different JAK1 mutations differentially potentiate responses to type I IFNs or to IL-9, another cytokine using JAK1 to mediate its effects. This suggests that the type of mutation influences the specificity of the effect on distinct cytokine receptor signaling. Finally, we also showed in an in vivo leukemia model that cells expressing JAK1A634D are hypersensitive to the anti-proliferative and anti-tumorigenic effect of type I IFN, suggesting that type I IFNs should be considered as a potential therapy for ALL with JAK1 activating mutations. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3524-3524
Author(s):  
Leonard S Golfman ◽  
Sankaranarayanan Kannan ◽  
Mandy A Hall ◽  
Patrick A Zweidler-McKay

Abstract Abstract 3524 Background: Although Notch signaling contributes to T cell leukemogenesis, the role of Notch in human AML is unclear. We and others have found that activation of Notch signaling inhibits AML growth and survival, e.g. a tumor suppressor like effect. However it is not known what the consequences of activating or inhibiting Notch signaling are in human AML in vivo. Approach: To determine whether Notch signaling would have growth inhibiting effects in vivo, we stably-transduced ML1 human AML cells with the constitutively-active forms of Notch1 and Notch2 (ICN1, ICN2), the common Notch target gene Hairy/Enhancer of Split 1 (HES1) or the pan-Notch inhibitor dominant-negative Mastermind-like (dnMAML) and performed in vivo competitive proliferation assays. Briefly, following transduction, each vector type were sorted to 50% GFP+ (containing the gene of interest) and GFP- (untransduced control cells). Groups of NSG mice were injected with these 50:50 mixtures of ML1 cells, and peripheral blood levels of GFP- and GFP+ cells were measured with flow cytometry for anti-human CD45 and GFP. Results: Peripheral blood engraftment of human CD45+ ML1 cells by week 5 was similar (2–5%) for ICN1, ICN2 and HES1 injected mice, but was significantly higher (23%) in dnMAML injected mice (Panel A). Similar to in vitro competitive proliferation assays, ICN1, ICN2 and HES1 all led to decreased relative numbers of GFP%+ cells, with 1%, 4% and 16% respectively (Panel B). Importantly, dnMAML had little effect on AML proliferation in vitro, however led to dramatic increases in GFP% as well as early morbidity and mortality due to increased leukemia burden, with 93% GFP+ (Panel B), demonstrating a selective advantage for dnMAML-expressing ML1 in vivo. When GFP+ (transduced) ML1 peripheral engraftment was directly compared to GFP- (parental CD45+) engraftment, the GFP- control cells had similar engraftment rates (2–5%) across groups of mice, while the GFP+ engraftment rates were significantly lower in ICN1, ICN2, and HES1 groups, but significantly higher in the dnMAML group (Panel C), demonstrating enhanced engraftment/proliferation in dnMAML-expressing cells. Conclusions: This suggests a previously unreported concept, namely that endogenous Notch ligands can inhibit human AML growth in vivo. This data supports the hypothesis that Notch behaves as a tumor suppressor in AML, and suggests the potential use of Notch agonists in human AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 262-262 ◽  
Author(s):  
Celine Besson-Fournier ◽  
Aurelie Gineste ◽  
Chloe Latour ◽  
Ophelie Gourbeyre ◽  
Delphine Meynard ◽  
...  

Abstract Hepcidin induction during inflammation is partly due to direct transcriptional regulation by the IL6/STAT3 pathway. However, SMAD1/5/8 signaling is also believed to have a role in hepcidin regulation during inflammation, as inhibitors of BMP type I receptors or the BMP ligand antagonist ALK3-Fc block hepcidin induction, increase iron availability, and ameliorate anemia in different animal models of inflammation. We previously observed that LPS stimulates liver Smad1/5/8 signaling even in Bmp6-deficient mice and our data suggested that, rather than Bmp6, activin B could be the activating ligand of this pathway during inflammation. There was indeed a dramatic induction of Inhbb mRNA, encoding activin B, in the liver of mice challenged with LPS, slightly preceding an increase in Smad1/5/8 phosphorylation and hepcidin (Hamp) mRNA. In liver cells in vitro, activin B stimulated not only canonical Smad2/3 but also non-canonical Smad1/5/8 signaling and hepcidin expression. Finally, pretreatment with a BMP type I receptor inhibitor showed that the effect of activin B on hepcidin expression in liver cells was entirely attributable to its effect on non-canonical Smad1/5/8 signaling. However, although these data demonstrate that activin B potently crossactivates non-canonical Smad1/5/8 signaling to induce hepcidin expression in hepatocytes in vitro, they do not definitively prove the role of activin B in hepcidin induction in vivo. Therefore, the goal of the present study was to challenge Inhbb-/- mice (deficient in activin B) with LPS or infect them with E. Coli and examine whether, as expected from the in vitro data, the lack of activin B prevents stimulation of both canonical Smad2/3 and non-canonical Smad1/5/8 signaling and induction of hepcidin in these mice. We first showed that activin B is actually the ligand that in vivo induces hepatic Smad2/3 and Smad1/5/8 phosphorylation in response to inflammatory stimuli such as LPS and bacterial infections. Indeed, these signaling pathways are no longer activated in Inhbb-/- mice (Fig. 1A). Interestingly however, we found that the lack of activin B and, as a consequence, the lack of activation of Smad1/5/8 signaling does not impair the induction of hepatic hepcidin expression by these inflammatory stimuli (Fig. 1B), illustrating the limitations of in vitro studies in simulating what is actually going on inside a liver. In conclusion, although activin B is directly responsible for liver activation of Smad1/5/8 signaling in vivo, this signaling pathway is not governing upregulation of hepcidin production in animals submitted to inflammatory stimuli. We also noticed that the level of Smad1/5/8 phosphorylation in the liver of mice challenged with LPS is not correlated with the expression of hepcidin. Indeed, although LPS-treated Bmp6-/- and wild-type mice have similar activation of Smad1/5/8 (Fig. 2A), the amount of circulating hepcidin in Bmp6-/- mice is about three times lower than in wild-type mice (Fig. 2B). This could indicate that induction of Smad1/5/8 signaling by inflammatory stimuli takes place in non-parenchymal cells rather than in hepatocytes and has no impact on hepcidin expression. Further investigations are necessary to determine in which liver cells activin B activates the canonical Smad2/3 and non-canonical Smad1/5/8 signaling observed in this study, and what are the exact target genes induced by this signaling. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 575-583 ◽  
Author(s):  
Gholamreza Hassanzadeh Ghassabeh ◽  
Patrick De Baetselier ◽  
Lea Brys ◽  
Wim Noël ◽  
Jo A. Van Ginderachter ◽  
...  

Compared with type I cytokine–associated myeloid (M1) cells, the molecular repertoire and mechanisms underlying functional properties of type II cytokine–associated myeloid (M2) cells are poorly characterized. Moreover, most studies have been limited to in vitro–elicited M2 cells. Here, comparative gene expression profiling of M1 and M2 cells, elicited in murine models of parasitic infections and cancer, yielded a common signature for in vivo–induced M2 populations independent of disease model, mouse strain, and organ source of cells. Some of these genes, such as cadherin-1, selenoprotein P, platelet-activating factor acetylhydrolase, and prosaposin, had not been documented as associated with M2. Overall, the common signature genes provide a molecular basis for a number of documented or suggested properties of M2, including immunomodulation, down-regulation of inflammation, protection against oxidative damage, high capacity for phagocytosis, and tissue repair. Interestingly, several common M2 signature genes encode membrane-associated markers that could be useful for the identification and isolation of M2. Some of these genes were not induced by IL-4/IL-13 or IL-10 under various in vitro settings and thus were missed in approaches based on in vitro–activated cells, validating our choice of in vivo models for expression profiling of myeloid cells.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Wen-Jing Yang ◽  
Yun-Fan Sun ◽  
An-Li Jin ◽  
Li-Hua Lv ◽  
Jie Zhu ◽  
...  

Abstract Accumulating evidence indicates that hepatocellular carcinoma (HCC) tumorigenesis, recurrence, metastasis, and therapeutic resistance are strongly associated with liver cancer stem cells (CSCs), a rare subpopulation of highly tumorigenic cells with self-renewal capacity and differentiation potential. Previous studies identified B cell leukemia/lymphoma-11b (BCL11B) as a novel tumor suppressor with impressive capacity to restrain CSC traits. However, the implications of BCL11B in HCC remain unclear. In this study, we found that low BCL11B expression was an independent indicator for shorter overall survival (OS) and time to recurrence (TTR) for HCC patients with surgical resection. In vitro and in vivo experiments confirmed BCL11B as a tumor suppressor in HCC with inhibitory effects on proliferation, cell cycle progression, apoptosis, and mobility. Furthermore, BCL11B could suppress CSC traits, as evidenced by dramatically decreased tumor spheroid formation, self-renewal potential and drug resistance. A Cignal Finder Array and dual-luciferase activity reporter assays revealed that BCL11B could activate the transcription of P73 via an E2F1-dependent manner. Thus, we concluded that BCL11B is a strong suppressor of retaining CSC traits in HCC. Ectopic expression of BCL11B might be a promising strategy for anti-HCC treatment with the potential to cure HBV-related HCC regardless of P53 mutation status.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2431-2431
Author(s):  
Sinsa Dovat ◽  
Chunhua Song ◽  
Kimberly J Payne ◽  
Chandrika S. Gowda

Abstract Abstract 2431 The Ikaros (IKZF1) gene encodes a DNA-binding zinc finger protein that functions as a tumor suppressor in leukemia. Defects in the Ikaros gene that lead to its decreased activity are associated with the development of B-cell precursor acute lymphoblastic leukemia (pre-B-ALL). However, the mechanisms by which Ikaros exerts its tumor suppressor activity, as well as the mechanisms that control the tumor suppressor function of Ikaros are poorly understood. Here, we report the identification of two novel Ikaros target genes, as well as a signal transduction pathway that regulates the Ikaros-mediated transcriptional control of these genes in pre-B ALL. We also present evidence that targeting the signal transduction pathway which regulates Ikaros transcriptional control is a potent therapeutic tool for treating pre-B ALL. Analysis of the promoter sequences of the CDC7 and the CDK6 genes revealed multiple evolutionarily-conserved Ikaros consensus binding sites. Using qChIP (quantitative chromatin immunoprecipitation assay) we found that Ikaros binds in vivo to the promoters of the CDC7 and CDK6 genes in the human Nalm6 pre-B ALL cell line, and in primary human pre-B ALL cells. This led to the hypothesis that Ikaros regulates transcription of CDC7 and CDK6 - genes whose expression is essential for cell cycle progression and cellular proliferation. The effect of Ikaros on CDC7 and CDK6 expression was studied using a transient co-transfection assay. Luciferase reporter plasmids containing the CDC7 or CDK6 promoter regions were co-transfected with or without Ikaros into 293T cells. Co-transfection of Ikaros led to decreased luciferase activity, suggesting that Ikaros acts as a repressor of the CDC7 and CDK6 upstream regulatory elements. Increased expression of Ikaros via retroviral transduction in Nalm6 cells resulted in decreased transcription of CDC7 and CDK6. Decreased transcription of these genes was associated with increased binding of Ikaros to their promoter regions as measured by qChIP. These results suggest that Ikaros negatively regulates transcription of CDC7 and CDK6, and thus negatively regulates cell cycle progression in pre-B cell leukemia. We have shown previously that phosphorylation of Ikaros by casein kinase II (CK2) inhibits Ikaros' ability to bind DNA and to regulate transcription of its target genes. CK2 activity is elevated in human leukemia. We tested whether the inhibition of CK2 affects the transcription of CDC7 and CDK6 in pre-B ALL in vitro and in vivo. In vitro treatment of Nalm6 pre-B ALL with TBB, a specific CK2 inhibitor, decreased transcription of CDC7 and CDK6 and was associated with increased binding of Ikaros to the promoters of these genes. Using an in vivo preclinical model of pre-B ALL we tested whether targeting of CK2 would affect transcription of CDC7 and CDK6. In vivo treatment of a human-mouse xenograft model of pre-B ALL with a CK2 inhibitor resulted in decreased transcription of CDC7 and CDK6 and strongly increased Ikaros binding to the promoters of these genes. The in vivo targeting of CK2 provided a strong anti-leukemia effect that resulted in the prolonged survival of treated mice as compared to controls. In summary, our results suggest that Ikaros exerts its tumor suppressor activity in pre-B ALL by repressing transcription of cell cycle-promoting genes. Targeting CK2 in vivo enhances Ikaros-mediated repression of cell cycle progression resulting in an anti-leukemia effect. These data demonstrate the efficacy of CK2 targeting as a treatment for pre-B ALL in a preclinical model. These results provide a mechanistic rationale and support for the use of CK2 inhibitors as a targeted treatment of pre-B ALL in early-stage clinical trials. Supported by National Institutes of Health R01 HL095120 and a St. Baldrick's Foundation Career Development Award (to S.D.). Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document