MK886 Induced Apoptosis in HL-60 Cells Via Inhibition mPGES-1 Expression and Down-Regulation Prostaglandin E2 Synthesize.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4824-4824
Author(s):  
Yiqing Li ◽  
Songmei Yin ◽  
Shuangfeng Xie ◽  
Danian Nie ◽  
Liping Ma ◽  
...  

Abstract Abstract 4824 Recent studies have shown that prostaglandin E2 (PGE2) may play a key role in the tumorigenesis and tumor development. Membrane-bound prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme that acts downstream of cyclooxygenase (COX) and specifically catalyzes the conversion of prostaglandin H2 (PGH2) to PGE2, was over-expression in a variety of solid tumor cells and tissues such as nonsmall-cell lung cancer, colon carcinoma, gastric carcinoma and breast cancer. MK886, a small molecular inhibitor, is a reasonable potency as an inhibitor of mPGES-1 in vitro experiment. In this study, we examined effects of MK886 on expression of mPGES-1 and PGE2 synthesis in human acute myeloid leukemia cell line (HL-60), observed cell proliferation and apoptosis after 24-h treatment with MK886, and tried to explore the possible mechanisms by checking some protein belong AKT cell singling pathway such as P-AKT, Bax and Bcl-2. We found that the expression levels of mPGES-1 mRNA and protein were higher in HL-60 cells than in normal mononuclearcells (MNC). MK886 inhibited mPGES-1 mRNA and protein expression and reduced PGE2 secretion in HL-60 cells in a dose-dependent manner. The cell proliferation was inhibited and the IC50 was 132.16μmol/L. With the increase of MK886 concentration, the cell apoptosis rate assayed by flow cytometry increased and the apparent apoptotic bodies increased when staining by Hoechst 33258. After treated with MK886 for 24h, protein was extracted and assayed by western blot. The results showed that the expression levels of P-AKT, Bcl-2 and c-myc decreased while the Bax protein expression increased in a dose-dependent manner. The caspase-3 activity, determined by colorimetric detection, also increased dose-dependently. These results indicated that mPGES-1 over-expressed in leukemia cell line HL-60, MK886 could induce apoptosis in HL-60 cells via reducing mPGES-1 expression and PGE2 synthesis dose-dependently, thereby regulate the AKT pathway including Bcl-2 family and the activity of caspase-3. It suggested that mPGES-1 inhibitor might emerge as an important therapeutic tool for leukemia treatment. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 818-825 ◽  
Author(s):  
E Berman ◽  
M Adams ◽  
R Duigou-Osterndorf ◽  
L Godfrey ◽  
B Clarkson ◽  
...  

Abstract We examined the effect of tamoxifen (Tmx), verapamil, and daunorubicin (DNR) in two cell lines that displayed the multidrug-resistant (MDR) phenotype and used laser flow cytometry to quantitate intracellular DNR content. In the vinblastine-resistant human lymphoblastic lymphoma cell line CEM-VBL, simultaneous incubation of DNR with Tmx 10 mumol/L or Tmx 50 mumol/L increased intracellular DNR fluorescence in a dose-dependent manner and demonstrated an uptake pattern similar to that seen with DNR and verapamil. Similar results were obtained in the vincristine- resistant human myeloid leukemia cell line HL-60/RV+. Cellular retention of DNR was also measured in both cell lines and results suggested that continuous exposure of the cells to Tmx resulted in higher intracellular DNR content compared with cells resuspended in fresh medium. No effect of Tmx or verapamil was observed in the drug- sensitive parent cell lines CEM or HL-60. Clonogenic experiments were then performed to determine whether Tmx was itself inhibitory to cell growth or whether Tmx potentiated DNR cytotoxicity. Tmx 10 mumol/L did not significantly inhibit either CEM-VBL or HL-60/RV+ cells after a 3- hour exposure followed by culture in methylcellulose. Tmx 50 mumol/L was significantly more inhibitory in both cell lines. However, cells that had been incubated with DNR and Tmx 10 mumol/L demonstrated a marked increment in growth inhibition compared with cells that had been incubated with DNR alone or Tmx 10 mumol/L alone. Based on the data presented here, we suggest that clinical testing of Tmx and DNR be pursued in the setting where MDR may play a role.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2834-2840 ◽  
Author(s):  
A Kuriu ◽  
H Ikeda ◽  
Y Kanakura ◽  
JD Griffin ◽  
B Druker ◽  
...  

Abstract We investigated the expression, degree of phosphorylation, and activation of the proto-oncogene c-kit product before and after stimulation with the c-kit ligand in a human factor-dependent myeloid leukemia cell line, MO7E. The culture supernatant of the BALB/3T3 fibroblast cell line, which contains the ligand for the murine c-kit product, was found to stimulate proliferation of the MO7E cell line in a dose-dependent manner. The proliferation was significantly inhibited by a tyrosine kinase inhibitor, genistein. An immunoblot technique with a monoclonal antibody specific for phosphotyrosine, showed that there was rapid, dose-dependent tyrosine-phosphorylation of the c-kit product in response to murine c-kit ligand. Furthermore, the murine c-kit ligand increased autokinase activity of the c-kit product in vitro. Similar results were obtained with human stem cell factor (SCF), a recombinant human ligand for the c-kit product. These results suggest that the phosphorylation and activation of the c-kit product are involved in proliferative signals of some human leukemia cells, as well as of normal hematopoietic cells.


Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 818-825
Author(s):  
E Berman ◽  
M Adams ◽  
R Duigou-Osterndorf ◽  
L Godfrey ◽  
B Clarkson ◽  
...  

We examined the effect of tamoxifen (Tmx), verapamil, and daunorubicin (DNR) in two cell lines that displayed the multidrug-resistant (MDR) phenotype and used laser flow cytometry to quantitate intracellular DNR content. In the vinblastine-resistant human lymphoblastic lymphoma cell line CEM-VBL, simultaneous incubation of DNR with Tmx 10 mumol/L or Tmx 50 mumol/L increased intracellular DNR fluorescence in a dose-dependent manner and demonstrated an uptake pattern similar to that seen with DNR and verapamil. Similar results were obtained in the vincristine- resistant human myeloid leukemia cell line HL-60/RV+. Cellular retention of DNR was also measured in both cell lines and results suggested that continuous exposure of the cells to Tmx resulted in higher intracellular DNR content compared with cells resuspended in fresh medium. No effect of Tmx or verapamil was observed in the drug- sensitive parent cell lines CEM or HL-60. Clonogenic experiments were then performed to determine whether Tmx was itself inhibitory to cell growth or whether Tmx potentiated DNR cytotoxicity. Tmx 10 mumol/L did not significantly inhibit either CEM-VBL or HL-60/RV+ cells after a 3- hour exposure followed by culture in methylcellulose. Tmx 50 mumol/L was significantly more inhibitory in both cell lines. However, cells that had been incubated with DNR and Tmx 10 mumol/L demonstrated a marked increment in growth inhibition compared with cells that had been incubated with DNR alone or Tmx 10 mumol/L alone. Based on the data presented here, we suggest that clinical testing of Tmx and DNR be pursued in the setting where MDR may play a role.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2834-2840 ◽  
Author(s):  
A Kuriu ◽  
H Ikeda ◽  
Y Kanakura ◽  
JD Griffin ◽  
B Druker ◽  
...  

We investigated the expression, degree of phosphorylation, and activation of the proto-oncogene c-kit product before and after stimulation with the c-kit ligand in a human factor-dependent myeloid leukemia cell line, MO7E. The culture supernatant of the BALB/3T3 fibroblast cell line, which contains the ligand for the murine c-kit product, was found to stimulate proliferation of the MO7E cell line in a dose-dependent manner. The proliferation was significantly inhibited by a tyrosine kinase inhibitor, genistein. An immunoblot technique with a monoclonal antibody specific for phosphotyrosine, showed that there was rapid, dose-dependent tyrosine-phosphorylation of the c-kit product in response to murine c-kit ligand. Furthermore, the murine c-kit ligand increased autokinase activity of the c-kit product in vitro. Similar results were obtained with human stem cell factor (SCF), a recombinant human ligand for the c-kit product. These results suggest that the phosphorylation and activation of the c-kit product are involved in proliferative signals of some human leukemia cells, as well as of normal hematopoietic cells.


Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M C Carbajo-García ◽  
A Corachán ◽  
M Segura ◽  
J Monleón ◽  
J Escrig ◽  
...  

Abstract Study question Is DNA methylation reversion through DNA methyltransferases (DNMT) inhibitors, such as 5-aza–2’-deoxycitidine, a potential therapeutic option for treatment of patients with uterine leiomyomas (UL)? Summary answer 5-aza–2’-deoxycitidine reduces proliferation and extracellular matrix (ECM) formation by inhibition of Wnt/ β-catenin pathway on UL cells, suggesting DNMT inhibitors as an option to treat UL. What is known already: UL is a multifactorial disease with an unclear pathogenesis and inaccurate treatment. Aberrant DNA methylation have been found in UL compared to myometrium (MM) tissue, showing hypermethylation of tumor suppressor genes, which contributes to the development of this tumor. The use of DNMT inhibitors, such as 5-aza–2’-deoxycytidine (5-aza-CdR), has been suggested to treat tumors in which altered methylation pattern is related to tumor progression, as occurs in UL. Based on this, we aimed to evaluate whether DNA methylation reversion through 5-aza-CdR reduces cell proliferation and ECM formation in UL cells, being a potential option for UL medical treatment. Study design, size, duration Prospective study comparing UL versus MM tissue and human uterine leiomyoma primary (HULP) cells treated with/without 5-aza-CdR at 0 µM (control), 2 µM, 5 µM and 10 µM for 72 hours. UL and MM tissue were collected from women without any hormonal treatment for the last 3 months (n = 16) undergoing myomectomy or hysterectomy due to symptomatic leiomyoma pathology. Participants were recruited between January 2019 and February 2020 at Hospital Universitario y Politecnico La Fe (Spain). Participants/materials, setting, methods Samples were collected from Caucasian premenopausal women aged 31–48 years, with a body mass index of < 30 and without hormonal treatment. DNMT1 gene expression was analysed in UL vs MM tissue by qRT-PCR and activity of DNMT was measured in UL and MM tissue and cells by ELISA. 5-aza-CdR effect on proliferation was assessed by CellTiter test and Western blot (WB), apoptosis and ECM analyzed by WB and Wnt/ β-catenin pathway by qRT-PCR and WB. Main results and the role of chance: DNMT1 gene expression was increased in UL compared to MM tissue (fold change [FC]=2.49, p-value [p]=0.0295). Similarly, DNMT activity was increased in both UL compared to MM tissue and HULP cells versus MM cells (6.50 vs 3.76 OD/h/mg, p = 0.026; 211.30 vs 63.67 OD/h/mg, p = 0.284, respectively). After 5-aza-CdR treatment, cell viability of HULP cells was reduced in a dose dependent manner, being statistically significant at 10 µM (85.25%, p = 0.0001). Accordantly, PCNA protein expression was significantly decreased at 10 µM in HULP cells (FC = 0.695, p = 0.034), demonstrating cell proliferation inhibition. Additionally, 5-aza-CdR inhibited ECM protein expression in HULP cells in a dose-dependent manner being statistically significant at 10 µM for COLLAGEN I (FC = 0.654, p = 0.023) and PAI–1 (FC = 0.654, p = 0.023), and at 2 µM and 10 µM for FIBRONECTIN (FC = 0.812, p = 0.020; FC = 0.733, p = 0.035; respectively). Final targets of Wnt/ β-catenin pathway were decreased after 5-aza-CdR treatment, protein expression of WISP1 was significantly inhibited at 10 µM (FC = 0.699, p = 0.026), while expression levels of Wnt/ β-catenin target genes C-MYC (FC = 0.745, p = 0.028 at 2 µM; FC = 0.728, p = 0.019 at 10 µM) and MMP7 (FC = 0.520, p = 0.003 at 5 µM, FC = 0.577, p = 0.007 at 10 µM) were also significantly downregulated in HULP-treated cells vs untreated cells. Limitations, reasons for caution: This study has strict inclusion criteria to diminish epigenetic variability, thereby we should be cautious extrapolating our results to general population. Besides, this is a proof of concept with the inherent cell culture limitations. Further studies are necessary to determine 5-aza-CdR dose and adverse effects on UL in vivo. Wider implications of the findings: 5-aza-CdR treatment reduces cell proliferation and ECM formation through Wnt/ β-catenin pathway inhibition, suggesting that inhibition of DNA methylation could be a promising new therapeutic approach to treat UL. Trial registration number Not applicable


Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1725-1732
Author(s):  
Hamdah Alsaeedi ◽  
Rowaid Qahwaji ◽  
Talal Qadah

Kola nut extracts have recently been reported to contain chemopreventive compounds providing several pharmacological benefits. This study investigated Kola nut extracts' anti-cancer activity on human immortalized myelogenous leukemia cell line K562 through apoptosis and cell cycle arrest. Fresh Kola nuts were prepared as powder and dissolved in DMSO. Different concentrations (50, 100, 150, 200, and 250 μg/ml) of working solutions were prepared. The K562 cells were treated with the different concentrations of Kola nut extract or vehicle control (10% DMSO) followed by incubation at 37°C for 24, 48, and 72 hours, respectively. Treatment activity was investigated in K562 cells; by Resazurin, and FITC/Propidium Iodide and 7-AAD stained cells to evaluate apoptotic cells and the cell cycle's progression. Inhibition of leukemia cell proliferation was observed. The extract effectively induced cell death, early and late apoptosis by approximately 30% after 24 and 48 hours incubation, and an increase in the rate of dead cells by 50% was observed after 72 hours of incubation. Also, cell growth reduction was seen at high dose concentrations (150 and 200 µg/ml), as evident by cell count once treated with Kola nut extract. The total number of apoptotic cells increased from 5.8% of the control group to 27.4% at 250 µg/ml concentration. Moreover, Kola nut extracts' effects on K562 cells increased gradually in a dose and time-dependent manner. It was observed that Kola nut extracts could arrest the cell cycle in the G2/M phase as an increase in the number of cells by 29.8% and 14.6 % were observed from 9.8% and 5.2% after 24 and 48 hours of incubation, respectively. This increase was detected in a dose and time-dependent manner. Kola nut extracts can be used as a novel anti-cancer agent in Leukemia treatment as it has shown significant therapeutic potential and therefore provides new insights in understanding the mechanisms of its action. Keywords: Kola nut extracts, Leukemia, K562 cell line, Apoptosis, Cancer.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2393
Author(s):  
Jakub Iwanejko ◽  
Elżbieta Wojaczyńska ◽  
Eliza Turlej ◽  
Magdalena Maciejewska ◽  
Joanna Wietrzyk

In the search for new antitumor agents, aminophosphonic acids and their derivatives based on octahydroquinoxalin-2(1H)-one scaffold were obtained and their cytotoxic properties and a mechanism of action were evaluated. Phosphonic acid and phosphonate moieties increased the antiproliferative activity in comparison to phenolic Mannich bases previously reported. Most of the obtained compounds revealed a strong antiproliferative effect against leukemia cell line (MV-4-11) with simultaneous low cytotoxicity against normal cell line (mouse fibroblasts-BALB/3T3). The most active compound was diphenyl-[(1R,6R)-3-oxo-2,5-diazabicyclo[4.4.0]dec-4-yl]phosphonate. Preliminary evaluation of the mechanism of action showed the proapoptotic effect associated with caspase 3/7 induction.


2004 ◽  
Vol 42 (11) ◽  
pp. 1777-1784 ◽  
Author(s):  
Jen-Hung Yang ◽  
Chi-Chung Chou ◽  
Ya-Wen Cheng ◽  
Lee-Yan Sheen ◽  
Ming-Chi Chou ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3559-3559
Author(s):  
Christian Baumgartner ◽  
Karoline V. Gleixner ◽  
Alexander Gruze ◽  
Puchit Samorapoompichit ◽  
Harald Esterbauer ◽  
...  

Abstract Chronic eosinophilic leukemia (CEL) is a myeloproliferative disorder characterized by molecular and/or cytogenetic evidence of monoclonality of eosinophils, sustained marked eosinophilia, and consecutive organ damage. In a majority of patients with CEL with or without associated mastocytosis, the transforming mutation FIP1L1-PDGFRα and the related CHIC2 deletion is found. The respective oncoprotein, FIP1L1-PDGFRα, is considered to play a major role in malignant cell growth in CEL. The tyrosine kinase (TK) inhibitor imatinib (STI571) has been described to counteract the TK activity of FIP1L1-PDGFRα in most patients, and has been introduced as a novel effective therapy in CEL. However, not all patients with CEL show a response to imatinib. Therefore, several attempts have been made to identify other TK inhibitors that counteract growth of neoplastic eosinophils in CEL. We provide evidence that dasatinib, a multi-targeted kinase inhibitor, blocks the growth and survival of EOL-1, an eosinophil leukemia cell line carrying FIP1L1-PDGFRα. The effects of dasatinib on proliferation of EOL-1 cells were dose-dependent, with an IC50 of 0.5–1 nM, that was found to be in the same range compared to IC50 values produced by imatinib. Dasatinib was also found to induce apoptosis in EOL-1 cells in a dose-dependent manner (IC-50: 1–10 nM). The apoptosis-inducing effects of dasatinib on EOL-1 cells were demonstrable by light microscopy, flow cytometry, and by a Tunel assay. To further examine the mechanism of growth inhibition induced by dasatinib in neoplastic eosinophils, Western blot experiments were performed using antibodies directed against phosphorylated or total PDGFRα. In these experiments, we were able to show that dasatinib at 1 μM completely blocks the phosphorylation of FIP1L1-PDGFRα in EOL-1 cells. In summary, our data show that dasatinib inhibits the growth of leukemic eosinophils through targeting of the TK activity of the disease-related oncoprotein FIP1L1-PDGFRα. Based on this observation, dasatinib may be considered as a new interesting treatment option for patients with CEL. As dasatinib is also known to block various KIT mutants as well as wild type KIT, such therapy may also be of interest for patients who have systemic mastocytosis (SM) with an associated CEL (SM-CEL).


Sign in / Sign up

Export Citation Format

Share Document