Enhanced Antitumoral Activity of Sorafenib or Cetuximab In Comparison to Etoposide In a Disseminated Human AML Model In Vivo

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2141-2141
Author(s):  
Julia Schüler ◽  
Kerstin Klingner ◽  
Katja Zirlik ◽  
Heinz-Herbert Fiebig ◽  
Joachim Böhm

Abstract Abstract 2141 Acute myeloid leukemia (AML), one of the most common leukemia in adults, is characterized by the accumulation of abnormal white blood cells in the bone marrow. Even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Angiogenesis contributes to the development of hematologic malignancies, although its role has not been as clearly defined in hematologic malignancies as in solid tumors. In the present study we have determined antitumoral activity of two well-known inhibitors of angiogenesis. Sorafenib, a small molecule inhibitor affecting inter alia the VEGF pathway (100mg/kg/day (d); applied 12 consecutive days) and Cetuximab, a chimeric antibody against human EGFR (30 mg/kg/d; applied once weekly for 3 weeks) were evaluated in comparison to Etoposide, a topoisomerase II inhibitor (24mg/kg/day; applied 3 consecutive days) as a well established compound in AML treatment regimens in comparison with a control group. Equal parts of HL-60 cells were injected intravenously and into the peritoneal cavity of NOD/SCID mice and respective therapies were started 14 days after implantation. Tumor growth was monitored by a) daily monitoring of AML symptoms, and b) weekly fluorescence-based in vivo imaging (FI) using a Alexa750-labeled anti-human CD45 antibody and c) verification of the FI data by histological examination of bone marrow and spleen at the end of the study. Tumor inhibition was calculated as the proportional reduction of mean AML cell infiltration at the respective compartment of the test- compared to the control-group (in %). HL-60 cells engrafted predominantly in bone marrow (BM; take rate = 100%), but were as well detectable in the spleen (30%). At the respective doses and schedules the examined compounds were well tolerated in tumor-bearing mice. No acute toxicity could be observed and maximal body weight loss was below 15%. Tumor development was clearly reduced by Cetuximab (reduction of 53% vs control), albeit to a lesser extend then Sorafenib (reduction of 99% vs control), which induced a complete remission within the treatment period. Treatment of Etoposide induced no markable tumor growth inhibition (reduction of 10% vs control). Thus, HL-60 cells engrafted in NOD/SCID mice representing a valuable in vivo model for AML which exhibits high reproducibility and take-rates in relevant compartments closely mimicking the clinical situation. Collection of whole-body FI data proved to be a time- and animal-saving analysis that allows to closely monitor AML growth. With regard to the demographic development, AML will be more and more a disease of the elderly. Thus, development of new therapeutic options compared to high-dose chemotherapy will be highly required. As the VEGF and EGFR pathways are closely related, further investigations will include the evaluation of potentially synergistic effects in combination of Sorafenib with Cetuximab in human disseminated AML xenograft models. Disclosures: No relevant conflicts of interest to declare.

1996 ◽  
Vol 14 (11) ◽  
pp. 3036-3042 ◽  
Author(s):  
K van Besien ◽  
D Przepiorka ◽  
R Mehra ◽  
S Giralt ◽  
I Khouri ◽  
...  

PURPOSE To determine the impact of prior or current CNS disease on the outcome of high-dose chemotherapy for patients with hematologic malignancies. PATIENTS AND METHODS In a 54-month period, 373 patients with hematologic malignancies underwent allogeneic or autologous bone marrow transplantation (BMT) or blood stem-cell transplantation using high-dose thiotepa, busulfan, and cyclophosphamide (TBC) as the preparative regimen. Four patients with active CNS disease at BMT and 20 patients with a history of prior CNS disease were identified. The outcomes of those with a history of CNS disease were compared with those of a matched control group. RESULTS Of four patients with active CNS disease at the time of BMT, two had CNS recurrences and one recurred in the bone marrow. One patient died of treatment-related toxicity. Four of 20 patients with prior CNS involvement currently remain free of disease. At 2 years, the disease-free survival (DFS) rate was 23% +/- 19%, and the DFS rate for the control group 39% +/- 24% (P = .053). An increased rate of treatment-related toxicity and especially grades II to IV CNS toxicity accounted for the poorer outcome of patients who had a history of CNS disease. Recurrence rates were not significantly different between the two groups. Prior radiation to the CNS correlated with CNS complications posttransplant (p = .01). CONCLUSION Consolidation with TBC and BMT can induce prolonged DFS in a proportion of patients with a history of CNS disease. Such patients are at increased risk for CNS complications that lead to an inferior overall outcome when compared with a control group.


2020 ◽  
Vol 20 ◽  
Author(s):  
Weihong Qu ◽  
Jianguo Zhao ◽  
Yaqing Wu ◽  
Ruian Xu ◽  
Shaowu Liu

Background:: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure although gene therapy may be a promising future alter-native. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgen-ic expression. Objective:: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. Method:: The subcutaneous xenograft mode were induced by subcutaneous injection of 2×106 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single-stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9)by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 stain-ing to evaluate tumor angiogenesis. Results:: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. Conclusion:: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and impli-cate rAAV9-Kal as a candidate for gene therapy of lung cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2004 ◽  
Vol 22 (12) ◽  
pp. 2452-2460 ◽  
Author(s):  
Steven G. DuBois ◽  
Julia Messina ◽  
John M. Maris ◽  
John Huberty ◽  
David V. Glidden ◽  
...  

Purpose Iodine-131–metaiodobenzylguanidine (131I-MIBG) has been shown to be active against refractory neuroblastoma. The primary toxicity of 131I-MIBG is myelosuppression, which might necessitate autologous hematopoietic stem-cell transplantation (AHSCT). The goal of this study was to determine risk factors for myelosuppression and the need for AHSCT after 131I-MIBG treatment. Patients and Methods Fifty-three patients with refractory or relapsed neuroblastoma were treated with 18 mCi/kg 131I-MIBG on a phase I/II protocol. The median whole-body radiation dose was 2.92 Gy. Results Almost all patients required at least one platelet (96%) or red cell (91%) transfusion and most patients (79%) developed neutropenia (< 0.5 × 103/μL). Patients reached platelet nadir earlier than neutrophil nadir (P < .0001). Earlier platelet nadir correlated with bone marrow tumor, more extensive bone involvement, higher whole-body radiation dose, and longer time from diagnosis to 131I-MIBG therapy (P ≤ .04). In patients who did not require AHSCT, bone marrow disease predicted longer periods of neutropenia and platelet transfusion dependence (P ≤ .03). Nineteen patients (36%) received AHSCT for prolonged myelosuppression. Of patients who received AHSCT, 100% recovered neutrophils, 73% recovered red cells, and 60% recovered platelets. Failure to recover red cells or platelets correlated with higher whole-body radiation dose (P ≤ .04). Conclusion These results demonstrate the substantial hematotoxicity associated with high-dose 131I-MIBG therapy, with severe thrombocytopenia an early and nearly universal finding. Bone marrow tumor at time of treatment was the most useful predictor of hematotoxicity, whereas whole-body radiation dose was the most useful predictor of failure to recover platelets after AHSCT.


2011 ◽  
Vol 114 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Hsin-I Ma ◽  
Shih-Hwa Chiou ◽  
Dueng-Yuan Hueng ◽  
Lung-Kuo Tai ◽  
Pin-I Huang ◽  
...  

Object Glioblastoma, the most common primary brain tumor, has a poor prognosis, even with aggressive resection and chemoradiotherapy. Recent studies indicate that CD133+ cells play a key role in radioresistance and recurrence of glioblastoma. Cyclooxygenase-2 (COX-2), which converts arachidonic acid to prostaglandins, is over-expressed in a variety of tumors, including CD133+ glioblastomas. The COX-2–derived prostaglandins promote neovascularization during tumor development, and conventional radiotherapy increases the proportion of CD133+ cells rather than eradicating them. The aim of the present study was to investigate the role of celecoxib, a selective COX-2 inhibitor, in enhancing the therapeutic effects of radiation on CD133+ glioblastomas. Methods Cells positive for CD133 were isolated from glioblastoma specimens and characterized by flow cytometry, then treated with celecoxib and/or ionizing radiation (IR). Clonogenic assay, cell irradiation, cell cycle analysis, Western blot, and xenotransplantation were used to assess the effects of celecoxib alone, IR alone, and IR with celecoxib on CD133+ and CD133− glioblastoma cells. Three separate xenotransplantation experiments were carried out using 310 severe combined immunodeficient (SCID) mice: 1) an initial tumorigenicity evaluation in which 3 different quantities of untreated CD133– cells or untreated or pretreated CD133+ cells (5 treatment conditions) from 7 different tumors were injected into the striatum of 2 mice (210 mice total); 2) a tumor growth study (50 mice); and 3) a survival study (50 mice). For these last 2 studies the same 5 categories of cells were used as in the tumorigenicity (untreated CD133– cells, untreated or pretreated CD133+ cells, with pretreatment consisting of celecoxib alone, IR alone, or IR and celecoxib), but only 1 cell source (Case 2) and quantity (5 × 104 cells) were used. Results High levels of COX-2 protein were detected in the CD133+ but not the CD133− glioblastoma cells. The authors further demonstrated that 30 μM celecoxib was able to effectively enhance the IR effect in inhibiting colony formation and increasing IR-mediated apoptosis in celecoxib-treated CD133+ glioblastoma cells. Furthermore, reduction in radioresistance was correlated with the induction of G2/M arrest, which was partially mediated through the increase in the level of phosphorylated-cdc2. In vivo xenotransplant analysis further confirmed that CD133+-associated tumorigenicity was significantly suppressed by celecoxib treatment. Importantly, pretreatment of CD133+ glioblastoma cells with a combination of celecoxib and IR before injection into the striatum of SCID mice resulted in a statistically significant reduction in tumor growth and a statistically significant increase in the mean survival rate of the mice. Conclusions Celecoxib combined with radiation plays a critical role in the suppression of growth of CD133+ glioblastoma stemlike cells. Celecoxib is therefore a radiosensitizing drug for clinical application in glioblastoma.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 563-569 ◽  
Author(s):  
G Molineux ◽  
Z Pojda ◽  
TM Dexter

Abstract Recombinant human granulocyte colony-stimulating factor (rhG-CSF) induces leukocytosis in vivo in both intact and splenectomized mice. Full dose response data showed a plateau in this effect at doses over 500 micrograms rhG-CSF/kg body weight/d in intact mice. The effect is magnified in splenectomized mice, where leukocyte numbers reach 100 x 10(6) mL after 4 days' treatment at 250 micrograms/kg/d. Further hematopoietic precursor populations are also affected in both marrow and the spleen; in general, marrow parameters were depressed, while splenic populations were enlarged. In splenectomized mice, both blood- borne stem cells were enhanced, and foci of extramedullary hematopoiesis were enlarged in addition to the effects seen in intact mice. In the marrow of splenectomized and intact mice treated with a high dose of G-CSF, erythroid suppression in the marrow was confirmed with radioactive iron. Our studies confirm and extend previous work on the mode of action of G-CSF, and indicate that side effects of high dose G-CSF therapy might include erythroid suppression in the bone marrow.


1992 ◽  
Vol 3 (suppl b) ◽  
pp. 123-127 ◽  
Author(s):  
Hans-Georg Klingemann ◽  
Heather Deal ◽  
Dianne Reid ◽  
Connie J Eaves

Despite the use of high dose chemoradiotherapy for the treatment of acute leukemia. relapse continues to be a major cause of death in patients given an autologous bone marrow transplant. Further augmentation of pretransplant chemotherapy causes life threatening toxicity to nonhematopoietic tissues and the effectiveness of currently available ex vivo purging methods in reducing the relapse rate is unclear. Recently, data from experimental models have suggested that bone marrow-derived lymphokine (IL-2)-activated killer (BM-LAK) cells might be used to eliminate residual leukemic cells both in vivo and in vitro. To evaluate this possibility clinically, a procedure was developed for culturing whole marrow harvests with IL-2 prior to use as autografts, and a number of variables examined that might affect either the generation of BM-LAK cells or the recovery of the primitive hematopoietic cells. The use of Dexter long term culture (LTC) conditions, which expose the cells to horse serum and hydrocortisone. supported LAK cell generation as effectively as fetal calf serum (FCS) -containing medium in seven-day cultures. Maintenance of BM-LAK cell activity after a further seven days of culture in the presence of IL-2 was also tested. As in the clinical setting. patients would receive IL-2 in vivo for an additional week immediately following infusion of the cultured marrow autograft. Generation ofBM-LAK activity was dependent on the presence of IL-2 and could be sustained by further incubation in medium containing IL-2. Primitive hematopoietic cells were quantitated by measuring the number of in vitro colony-forming progenitors produced after five weeks in secondary Dexter-type LTC. Maintenance of these 'LTC-initiating cells' was unaffected by lL-2 in the culture medium. These results suggest that LAK cells can be generated efficien tly in seven-day marrow autograft cultures containing IL-2 under conditions that allow the most primitive human hematopoietic cells currently detectable to be maintained.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


Sign in / Sign up

Export Citation Format

Share Document