Infliximab Drives Gamma-Delta T Cell Expansion In Crohn's Disease – a Predictor of Lymphoma Risk?

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4131-4131
Author(s):  
Jens Kelsen ◽  
Heinrich Schwindt ◽  
Anders Dige ◽  
Francesco d'Amore ◽  
Finn Skou Pedersen ◽  
...  

Abstract Abstract 4131 Background: Due to the widespread use of combined immunosuppressive therapy in the management of Crohn's disease (CD), the risk of malignant lymphoproliferation, including the fatal hepato-splenic T cell lymphoma (HSTCL), has become a major concern. We investigated dynamic changes of peripheral gamma-delta (γδ)-T cells during CD treatment with the anti-TNF-α-antibodies infliximab (Remicade®) and adalimumab (Humira®). Methods: Forty-six patients with active CD and nine healthy volunteers were analysed. Patients delivered blood samples before and 1, 7, and 42 days after infliximab 5 mg/kg (20 patients) or adalimumab given as induction with 160 mg and 80 mg after 2 weeks and subsequently 40 mg every other week (26 patients). The γδ-T cells were analysed using FACS analysis. Patients with high percentages of peripheral γδ-T cells were characterized by PCR-assessment of γδ-T cell clonality. Results: Of 46 patients included in the analysis, 35 (76%) had γδ-T cell levels comparable to those of healthy individuals (mean: 1.6%; 95% CI: 1.3–2.0%). Higher γδ-T cell levels from 5% up to 15% occurred in 11 patients (24% of the total cohort). A high γδ-T cell level was associated with non-smoker status and young age. In 18 patients receiving thiopurines or methotrexate, the mean baseline γδ-T cell percentage was 4.4% (95% CI: 2.1–6.7%). In three male CD patients with high baseline values, the γδ-T cell percentage doubled within 24 hours following infliximab therapy. Another male patient on infliximab monotherapy presented with a predominantly clonal baseline γδ-T cell population as high as 20%, further increasing to 25% shortly after infliximab treatment. Conclusion: One fourth of the CD patients treated with immunomodulators had constitutive high levels of circulating γδ-T cells, and infliximab aggravates this γδ-T cell expansion. We raise the hypothesis that such patients may be at increased risk of developing a malignant γδ-T cell lymphoproliferation. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 9 (12) ◽  
pp. e003339
Author(s):  
Huaishan Wang ◽  
Hui Chen ◽  
Shujing Liu ◽  
Jie Zhang ◽  
Hezhe Lu ◽  
...  

BackgroundGamma delta (γδ) T cells are attractive effector cells for cancer immunotherapy. Vδ2 T cells expanded by zoledronic acid (ZOL) are the most commonly used γδ T cells for adoptive cell therapy. However, adoptive transfer of the expanded Vδ2 T cells has limited clinical efficacy.MethodsWe developed a costimulation method for expansion of Vδ2 T cells in PBMCs by activating γδ T-cell receptor (γδTCR) and Toll-like receptor (TLR) 7/8 using isopentenyl pyrophosphate (IPP) and resiquimod, respectively, and tested the functional markers and antitumoral effects in vitro two-dimensional two-dimensional and three-dimensional spheroid models and in vivo models. Single-cell sequencing dataset analysis and reverse-phase protein array were employed for mechanistic studies.ResultsWe find that Vδ2 T cells expanded by IPP plus resiquimod showed significantly increased cytotoxicity to tumor cells with lower programmed cell death protein 1 (PD-1) expression than Vδ2 T cells expanded by IPP or ZOL. Mechanistically, the costimulation enhanced the activation of the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (PKB/Akt)–the mammalian target of rapamycin (mTOR) pathway and the TLR7/8–MyD88 pathway. Resiquimod stimulated Vδ2 T-cell expansion in both antigen presenting cell dependent and independent manners. In addition, resiquimod decreased the number of adherent inhibitory antigen-presenting cells (APCs) and suppressed the inhibitory function of APCs by decreasing PD-L1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in these cells during in vitro Vδ2 T-cell expansion. Finally, we showed that human Vδ2 T cells can be expanded from PBMCs and spleen of humanized NSG mice using IPP plus resiquimod or ZOL, demonstrating that humanized mice are a promising preclinical model for studying human γδ T-cell development and function.ConclusionsVδ2 T cells expanded by IPP and resiquimod demonstrate improved anti-tumor function and have the potential to increase the efficacy of γδ T cell-based therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weiwei Chen ◽  
Dengming Lai ◽  
Yuehua Li ◽  
Xueke Wang ◽  
Yihang Pan ◽  
...  

BackgroundStudies have revealed important roles for IL-17A in the development of acute lung injury (ALI) following sepsis. However, the mechanism underlying the regulation of lung IL-17A remains to be fully addressed. Recent studies suggested the effect of neuromedin U (NMU) on immune cell activation and the role of group 2 innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production, particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-producing γδ T cells activation in sepsis.MethodsWild type mice were subjected to cecal ligation and puncture (CLP) to induce sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, γδ T cells, IL-17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in ILC2-γδ T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then co-cultured with lung γδ T cells, and the levels of IL-17A from co-culture systems were measured.ResultsIn septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing γδ T cells in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased as well. Exogenous NMU further augments these increases. The main source of IL-17A in response to CLP is γδ T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro co-culture of ILC2s and γδ T cells leads to increased number of γδ T cells and higher production of IL-17A from γδ T cells, and these alterations are further augmented by septic treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated the upregulation of γδ T cells and IL-17A production.ConclusionIn sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2 activation, which, in turn, promote IL-17A-producing γδ T cell expansion and secretion of IL-17A. ILC2-derived IL-9 plays an important role in mediating γδ T cell expansion and IL-17A production. This study explores a new mechanism underlying neuronal regulation of innate immunity in sepsis.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2790-2790
Author(s):  
Jeremy Wee Kiat Ng ◽  
Joey Lai ◽  
Tony Kiat Hon Lim ◽  
William YK Hwang ◽  
Shang Li ◽  
...  

Abstract Gamma-delta (γδ) T cells have emerged as a promising candidate for adoptive cellular immunotherapy. To harness and maximize the anti-leukemia properties of these cells, we sort to comprehensively profile the transcriptomic signatures and immune repertoire of in vitro expanded γδ T cell products. Given the reported diverse TCR γδ repertoire and naïve nature of γδ T cells found in human cord blood (CB γδ), we serially track the molecular and cellular changes in these cells upon activation in expansion cultures. Based on the established viral reactivities of γδ T cell as well as prior studies showing their cross reactivities against leukemia and cancer cells, we had previously shown that stimulating CB γδ with an irradiated EBV-LCL feeder cell-based rapid expansion protocol (REP) is capable of generating cell products with potent and specific cytotoxicity against human AML cells. In the present study, using single cell RNA sequencing (scRNA-seq) coupled with single cell TCR γδ repertoire analysis, we compared the transcription signatures between our REP expanded γδ T cell (REP γδ) and non-manipulated γδ T cells reported in literatures, showing the progressive acquisition of an adult PB derived γδ T cell (PB γδ)-like cell states. Time course analysis demonstrated complex T cell activation and maturation trajectories correlating with variable level of clonal induction throughout the course of in vitro expansion. At the end of expansion, the harvested REP γδ are predominantly of the V γ4V δ1 subtype. Nevertheless, upon exposing REP γδ to target leukemia cell line K562, outgrowth of other non-V γ4V δ1 as well as the semi-invariant V γ9V δ2 cells were observed. Taken together, our data shows that as CB γδ expand and differentiate in culture, they adopt an adult PB γδ-like program. More importantly, our data highlights the rich clonal composition of in vitro expanded CB γδ, with different clonotypes being variably activated upon exposure to different stimuli. Such characteristics can potentially overcome the challenges of cancer heterogeneity and cell persistence, with the potential of improving outcomes in cell immunotherapy. Disclosures No relevant conflicts of interest to declare.


Science ◽  
2020 ◽  
Vol 367 (6478) ◽  
pp. eaay5516 ◽  
Author(s):  
Marc Rigau ◽  
Simone Ostrouska ◽  
Thomas S. Fulford ◽  
Darryl N. Johnson ◽  
Katherine Woods ◽  
...  

Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell–based immunotherapies.


Gut ◽  
2011 ◽  
Vol 60 (Suppl 1) ◽  
pp. A148-A148
Author(s):  
C. R. Hedin ◽  
N. E. McCarthy ◽  
S. Bhattacharjee ◽  
G. James ◽  
K. Whelan ◽  
...  

2013 ◽  
Vol 20 (5) ◽  
pp. 738-746 ◽  
Author(s):  
Juan C. Andreu-Ballester ◽  
Constantino Tormo-Calandín ◽  
Carlos Garcia-Ballesteros ◽  
J. Pérez-Griera ◽  
Victoria Amigó ◽  
...  

ABSTRACTGamma-delta T cells are the most abundant of all epithelial-resident lymphocytes and are considered a first line of defense against pathogens in the mucosa. Our objective was to confirm the reduction in γδ T cell subsets and its relationship with mortality in patients with sepsis. We studied 135 patients with sepsis attended in the emergency department and intensive care unit of two hospitals and compared them with a similar control group of healthy subjects. The αβ and γδ T cell subsets were determined via flow cytometry according to the stage of the sepsis and its relationship with mortality. All the lymphocyte subsets were reduced with respect to the corresponding subsets in the control group. All the γδ T cell populations decreased significantly as the septic picture worsened. Furthermore, γδ T cells showed decreases at days 2, 3, and 4 from the start of sepsis. Twenty-six patients with sepsis died (19.3%). The γδ T cells, specifically, the CD3+CD56+γδ T cells, were significantly reduced in those septic patients who died. Our results indicate that, during sepsis, γδ T cells show the largest decrease and this reduction becomes more intense when the septic process becomes more severe. Mortality was associated with a significant decrease in γδ T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexandria Gillespie ◽  
Maria Gracia Gervasi ◽  
Thillainayagam Sathiyaseelan ◽  
Timothy Connelley ◽  
Janice C. Telfer ◽  
...  

The WC1 cell surface family of molecules function as hybrid gamma delta (γδ) TCR co-receptors, augmenting cellular responses when cross-linked with the TCR, and as pattern recognition receptors, binding pathogens. It is known that following activation, key tyrosines are phosphorylated in the intracytoplasmic domains of WC1 molecules and that the cells fail to respond when WC1 is knocked down or, as shown here, when physically separated from the TCR. Based on these results we hypothesized that the colocalization of WC1 and TCR will occur following cellular activation thereby allowing signaling to ensue. We evaluated the spatio-temporal dynamics of their interaction using imaging flow cytometry and stochastic optical reconstruction microscopy. We found that in quiescent γδ T cells both WC1 and TCR existed in separate and spatially stable protein domains (protein islands) but after activation using Leptospira, our model system, that they concatenated. The association between WC1 and TCR was close enough for fluorescence resonance energy transfer. Prior to concatenating with the WC1 co-receptor, γδ T cells had clustering of TCR-CD3 complexes and exclusion of CD45. γδ T cells may individually express more than one variant of the WC1 family of molecules and we found that individual WC1 variants are clustered in separate protein islands in quiescent cells. However, the islands containing different variants merged following cell activation and before merging with the TCR islands. While WC1 was previously shown to bind Leptospira in solution, here we showed that Leptospira bound WC1 proteins on the surface of γδ T cells and that this could be blocked by anti-WC1 antibodies. In conclusion, γδ TCR, WC1 and Leptospira interact directly on the γδ T cell surface, further supporting the role of WC1 in γδ T cell pathogen recognition and cellular activation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-36
Author(s):  
Kar Wai Tan ◽  
Zhihui Li ◽  
Joey Lai ◽  
Dianyan Guo ◽  
Yeh Ching Linn ◽  
...  

Gamma-delta (γδ) T cells represent a special class of unconventional T cells defined by their expression of the somatically rearranged T cell receptor (TCR) γ and δ chains. Unlike TCRαβ, it has been reported that different TCRγδ are also able to bind to their antigens in the context of non-classical MHC-like molecules or totally independent of the MHC complexes. Additionally, a variety of NK receptors are known to be expressed by γδ T cells, conferring their ability to sense alternative classes of cancer-associated antigens in a multimodal manner. Such a diverse mode of antigen recognition possibly endows γδ T cells with a wide spectrum of functional activation program. Our team had previously explored the potential of expanding cord blood (CB) derived γδ T cells (CB-gdT) as well as their corresponding ability to target primary acute myeloid leukemia (AML) cells. Using a feeder cell line-based in vitro expansion protocol, we achieved a clinically relevant scale expansion of γδ T cells over a period of 14 days. These cells exhibit variable degree of potency against a range of human AML cell lines and primary patient samples. In order to dissect the cellular and molecular programs governing the activation, differentiation and functional states of our in vitro expanded CB-gdT, we performed multiplex single cell sequencing analysis using the 10X Genomics Chromium System. After initial quality check and filtering, data from a total of 4,276 cells were retrieved. Among which, we identified 742 unique TCRγδ clonotypes, representing 18.6% of the starting 4,000 FACS purified γδ T cells seeded for expansion. The largest 10% of the clones was found to make up 60.9% of the total retrieved cells, demonstrating a significant extent of clonal focusing in our expansion cultures. Consistent to our FACS analysis, Vδ1 is the predominant TRD chain in the expanded cultures, accounting for 61.2% of all clones. Vγ4 is the most prevalent TRG chain making up to 24.9% of all clones regardless of the paired Vδ subtype. Notably, however, the largest γδ T cell clone did not utilize Vγ4, indicating that Vγ4 clones, although frequent, are not the most proliferative clone. These data are supportive of the adaptive characteristics of CB-gdTs, likely in a TCRγδ dependent manner. Based on uniform manifold approximation and projection for dimension reduction (UMAP), all cells were clustered into 11 subsets. Key cytotoxic genes including GZMB, GZMA and NKG7 were all highly expressed across all clusters, indicating that the expanded cells were indeed functionally cytotoxic. Comparing against multiple curated gene sets, we have identified 3 main subsets of γδ T cells: the Proliferative, Cytotoxic γδ T cells (P-CT), Differentiated Cytotoxic γδ T cells (D-CT) and Late Activated Cytotoxic γδ T cells (LA-CT). P-CT (~46% of all cells) shows an expression profile positively associated with cell proliferation as well as increased cell surface expression of memory T cell markers CD27, CCR7 and CD62L. Similar to cytotoxic genes, genes associated with TCR signaling and interferon response were found to be expressed across all cell clusters, yet with elevated levels in D-CT and LA-CT. Furthermore, cell surface expression of different NK receptors including NKG2D, DNAM1 and NKp30 are more enriched in LA-CT compared to the other 2 subsets, suggesting the acquisition of additional NK receptor related functions in this group of cells. Consistent with the concept of progressive γδ T cell differentiation and activation in culture, we found that in 85 (11.5%) of the γδ T cell clones bearing more than 10 cells each, all clones contain cells distributed across the 3 different γδ T cell subsets. Further analysis did not reveal any relationship between the relative proportion of the subsets within each clone with clone size nor any specific type of delta/gamma chain. Taken together, our high-resolution transcriptome analysis suggests that as CB-gdT expand and differentiate in culture, they are likely to adopt dynamic memory and signal -specific functional programs. More importantly, our data highlights the rich clonal and cellular composition of in vitro expanded CB-gdT. These unique characteristics of our CB-gdT can overcome the challenges of tumor heterogeneity and cell persistence, with the potential of improving outcomes in cell immunotherapy. Disclosures Tan: Tessa Therapeutics Ltd: Current Employment.


2007 ◽  
Vol 82 (3) ◽  
pp. 1155-1165 ◽  
Author(s):  
David A. Kosub ◽  
Ginger Lehrman ◽  
Jeffrey M. Milush ◽  
Dejiang Zhou ◽  
Elizabeth Chacko ◽  
...  

ABSTRACT The objective of this study was to functionally assess gamma/delta (γδ) T cells following pathogenic human immunodeficiency virus (HIV) infection of humans and nonpathogenic simian immunodeficiency virus (SIV) infection of sooty mangabeys. γδ T cells were obtained from peripheral blood samples from patients and sooty mangabeys that exhibited either a CD4-healthy (>200 CD4+ T cells/μl blood) or CD4-low (<200 CD4 cells/μl blood) phenotype. Cytokine flow cytometry was utilized to assess production of Th1 cytokines tumor necrosis factor alpha and gamma interferon following ex vivo stimulation with either phorbol myristate acetate/ionomycin or the Vδ2 γδ T-cell receptor agonist isopentenyl pyrophosphate. Sooty mangabeys were observed to have higher percentages of γδ T cells in their peripheral blood than humans did. Following stimulation, γδ T cells from SIV-positive (SIV+) mangabeys maintained or increased their ability to express the Th1 cytokines regardless of CD4+ T-cell levels. In contrast, HIV-positive (HIV+) patients exhibited a decreased percentage of γδ T cells expressing Th1 cytokines following stimulation. This dysfunction is primarily within the Vδ2+ γδ T-cell subset which incurred both a decreased overall level in the blood and a reduced Th1 cytokine production. Patients treated with highly active antiretroviral therapy exhibited a partial restoration in their γδ T-cell Th1 cytokine response that was intermediate between the responses of the uninfected and HIV+ patients. The SIV+ sooty mangabey natural hosts, which do not proceed to clinical AIDS, provide evidence that γδ T-cell dysfunction occurs in HIV+ patients and may contribute to HIV disease progression.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Cristina Marchetti ◽  
Paolo Borghetti ◽  
Antonio Cacchioli ◽  
Luca Ferrari ◽  
Federico Armando ◽  
...  

Abstract Background Data on gamma-delta (γδ) T lymphocytes in the peripheral blood of dogs are scant, related only to healthy pure breed dogs and limited to a restricted age range. The aim of the study was to investigate the modulation of the γδ T lymphocyte (TCRγδ+) subpopulation in peripheral blood of crossbreed healthy dogs according to five identified stages of life: Puppy, Junior, Adult, Mature, Senior and to determine its implication in aging. A rigorous method of recruitment was used to minimize the influence of internal or external pressure on the immune response. Twenty-three intact female and twenty-four intact male dogs were enrolled. Blood samples were collected and immunophenotyping of peripheral blood T lymphocytes and γδ T cell subpopulations was performed. Results The percentage of γδ T cells in peripheral blood lymphocytes was comparable with the value of 2.5% published by Faldyna and co-workers (2001), despite the percentage reported was investigated in less arranged age range groups and coming from four different dog pure breeds, whereas our data were recorded on wider age range groups and coming from crossbreed dogs. Therefore, the γδ T cell percentage (2.5%) is consistent and points out that such value is breed-independent. Statistical analysis highlighted differences in both percentage and absolute γδ T cells according to the stage of life. γδ T cells decreased significantly in the peripheral blood of elder dogs (Senior group) in comparison with previous stages of life (Puppy, Junior, and Adult groups). Differences in γδ T cells are significant and they are reported, for the first time, related to dog aging. Conclusions The study confirms dogs to be among the animals with a low TCRγδ+ cell profile. A decrease of the TCRγδ+ subpopulation percentage was observed in elder dogs. TCRγδ+ cells of group S were different from those of groups P, J, and A. The differences are reported for the first time in dog aging. Identifying the stage of life when the decrease of γδ T lymphocytes starts can be useful for providing a rationale for drafting a wellness plan trial to support thymus immune functions and mitigate its functional exhaustion.


Sign in / Sign up

Export Citation Format

Share Document