scholarly journals Costimulation of γδTCR and TLR7/8 promotes Vδ2 T-cell antitumor activity by modulating mTOR pathway and APC function

2021 ◽  
Vol 9 (12) ◽  
pp. e003339
Author(s):  
Huaishan Wang ◽  
Hui Chen ◽  
Shujing Liu ◽  
Jie Zhang ◽  
Hezhe Lu ◽  
...  

BackgroundGamma delta (γδ) T cells are attractive effector cells for cancer immunotherapy. Vδ2 T cells expanded by zoledronic acid (ZOL) are the most commonly used γδ T cells for adoptive cell therapy. However, adoptive transfer of the expanded Vδ2 T cells has limited clinical efficacy.MethodsWe developed a costimulation method for expansion of Vδ2 T cells in PBMCs by activating γδ T-cell receptor (γδTCR) and Toll-like receptor (TLR) 7/8 using isopentenyl pyrophosphate (IPP) and resiquimod, respectively, and tested the functional markers and antitumoral effects in vitro two-dimensional two-dimensional and three-dimensional spheroid models and in vivo models. Single-cell sequencing dataset analysis and reverse-phase protein array were employed for mechanistic studies.ResultsWe find that Vδ2 T cells expanded by IPP plus resiquimod showed significantly increased cytotoxicity to tumor cells with lower programmed cell death protein 1 (PD-1) expression than Vδ2 T cells expanded by IPP or ZOL. Mechanistically, the costimulation enhanced the activation of the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (PKB/Akt)–the mammalian target of rapamycin (mTOR) pathway and the TLR7/8–MyD88 pathway. Resiquimod stimulated Vδ2 T-cell expansion in both antigen presenting cell dependent and independent manners. In addition, resiquimod decreased the number of adherent inhibitory antigen-presenting cells (APCs) and suppressed the inhibitory function of APCs by decreasing PD-L1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in these cells during in vitro Vδ2 T-cell expansion. Finally, we showed that human Vδ2 T cells can be expanded from PBMCs and spleen of humanized NSG mice using IPP plus resiquimod or ZOL, demonstrating that humanized mice are a promising preclinical model for studying human γδ T-cell development and function.ConclusionsVδ2 T cells expanded by IPP and resiquimod demonstrate improved anti-tumor function and have the potential to increase the efficacy of γδ T cell-based therapies.

2021 ◽  
Vol 12 ◽  
Author(s):  
Weiwei Chen ◽  
Dengming Lai ◽  
Yuehua Li ◽  
Xueke Wang ◽  
Yihang Pan ◽  
...  

BackgroundStudies have revealed important roles for IL-17A in the development of acute lung injury (ALI) following sepsis. However, the mechanism underlying the regulation of lung IL-17A remains to be fully addressed. Recent studies suggested the effect of neuromedin U (NMU) on immune cell activation and the role of group 2 innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production, particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-producing γδ T cells activation in sepsis.MethodsWild type mice were subjected to cecal ligation and puncture (CLP) to induce sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, γδ T cells, IL-17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in ILC2-γδ T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then co-cultured with lung γδ T cells, and the levels of IL-17A from co-culture systems were measured.ResultsIn septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing γδ T cells in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased as well. Exogenous NMU further augments these increases. The main source of IL-17A in response to CLP is γδ T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro co-culture of ILC2s and γδ T cells leads to increased number of γδ T cells and higher production of IL-17A from γδ T cells, and these alterations are further augmented by septic treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated the upregulation of γδ T cells and IL-17A production.ConclusionIn sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2 activation, which, in turn, promote IL-17A-producing γδ T cell expansion and secretion of IL-17A. ILC2-derived IL-9 plays an important role in mediating γδ T cell expansion and IL-17A production. This study explores a new mechanism underlying neuronal regulation of innate immunity in sepsis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4131-4131
Author(s):  
Jens Kelsen ◽  
Heinrich Schwindt ◽  
Anders Dige ◽  
Francesco d'Amore ◽  
Finn Skou Pedersen ◽  
...  

Abstract Abstract 4131 Background: Due to the widespread use of combined immunosuppressive therapy in the management of Crohn's disease (CD), the risk of malignant lymphoproliferation, including the fatal hepato-splenic T cell lymphoma (HSTCL), has become a major concern. We investigated dynamic changes of peripheral gamma-delta (γδ)-T cells during CD treatment with the anti-TNF-α-antibodies infliximab (Remicade®) and adalimumab (Humira®). Methods: Forty-six patients with active CD and nine healthy volunteers were analysed. Patients delivered blood samples before and 1, 7, and 42 days after infliximab 5 mg/kg (20 patients) or adalimumab given as induction with 160 mg and 80 mg after 2 weeks and subsequently 40 mg every other week (26 patients). The γδ-T cells were analysed using FACS analysis. Patients with high percentages of peripheral γδ-T cells were characterized by PCR-assessment of γδ-T cell clonality. Results: Of 46 patients included in the analysis, 35 (76%) had γδ-T cell levels comparable to those of healthy individuals (mean: 1.6%; 95% CI: 1.3–2.0%). Higher γδ-T cell levels from 5% up to 15% occurred in 11 patients (24% of the total cohort). A high γδ-T cell level was associated with non-smoker status and young age. In 18 patients receiving thiopurines or methotrexate, the mean baseline γδ-T cell percentage was 4.4% (95% CI: 2.1–6.7%). In three male CD patients with high baseline values, the γδ-T cell percentage doubled within 24 hours following infliximab therapy. Another male patient on infliximab monotherapy presented with a predominantly clonal baseline γδ-T cell population as high as 20%, further increasing to 25% shortly after infliximab treatment. Conclusion: One fourth of the CD patients treated with immunomodulators had constitutive high levels of circulating γδ-T cells, and infliximab aggravates this γδ-T cell expansion. We raise the hypothesis that such patients may be at increased risk of developing a malignant γδ-T cell lymphoproliferation. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A812-A812
Author(s):  
Pia Aehnlich ◽  
Per Thor Straten ◽  
Ana Micaela Carnaz Simoes ◽  
Signe Skadborg ◽  
Gitte Olofsson

BackgroundAdoptive cell therapy (ACT) is an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9Vδ2 T cells is a promising approach to overcome this hurdle.MethodsIn this study, we explored the effect of different cytokine conditions on the expansion of Vγ9Vδ2 T cells in vitro.ResultsWe could show that Vγ9Vδ2 T cell expansion is feasible with two different cytokine conditions: (a) 1000U/ml interleukin (IL)-2 and (b) 100U/ml IL-2+100U/ml IL-15. We did not observe differences in expansion rate or Vγ9Vδ2 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9Vδ2 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in phenotype, we demonstrated that IL-2/IL-15-expanded Vγ9Vδ2 T cells harbor increased amounts of perforin, granzyme B and granulysin in a resting state and release more upon activation. IL-2/IL-15-expanded Vγ9Vδ2 T cells also showed higher levels of transcription factor T-bet, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity.ConclusionsThese results advocate the inclusion of IL-15 into ex vivo Vγ9Vδ2 T cell expansion protocols in future clinical studies.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 200-206 ◽  
Author(s):  
Martin Wilhelm ◽  
Volker Kunzmann ◽  
Susanne Eckstein ◽  
Peter Reimer ◽  
Florian Weissinger ◽  
...  

Abstract There is increasing evidence that γδ T cells have potent innate antitumor activity. We described previously that synthetic aminobisphosphonates are potent γδ T cell stimulatory compounds that induce cytokine secretion (ie, interferon γ [IFN-γ]) and cell-mediated cytotoxicity against lymphoma and myeloma cell lines in vitro. To evaluate the antitumor activity of γδ T cells in vivo, we initiated a pilot study of low-dose interleukin 2 (IL-2) in combination with pamidronate in 19 patients with relapsed/refractory low-grade non-Hodgkin lymphoma (NHL) or multiple myeloma (MM). The objectives of this trial were to determine toxicity, the most effective dose for in vivo activation/proliferation of γδ T cells, and antilymphoma efficacy of the combination of pamidronate and IL-2. The first 10 patients (cohort A) who entered the study received 90 mg pamidronate intravenously on day 1 followed by increasing dose levels of continuous 24-hour intravenous (IV) infusions of IL-2 (0.25 to 3 × 106 IU/m2) from day 3 to day 8. Even at the highest IL-2 dose level in vivo, γδ T-cell activation/proliferation and response to treatment were disappointing with only 1 patient achieving stable disease. Therefore, the next 9 patients were selected by positive in vitro proliferation of γδ T cells in response to pamidronate/IL-2 and received a modified treatment schedule (6-hour bolus IV IL-2 infusions from day 1-6). In this patient group (cohort B), significant in vivo activation/proliferation of γδ T cells was observed in 5 patients (55%), and objective responses (PR) were achieved in 3 patients (33%). Only patients with significant in vivo proliferation of γδ T cells responded to treatment, indicating that γδ T cells might contribute to this antilymphoma effect. Overall, administration of pamidronate and low-dose IL-2 was well tolerated. In conclusion, this clinical trial demonstrates, for the first time, that γδ T-cell–mediated immunotherapy is feasible and can induce objective tumor responses. (Blood. 2003;102:200-206)


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1759-1766 ◽  
Author(s):  
Peter N. Lalli ◽  
Michael G. Strainic ◽  
Min Yang ◽  
Feng Lin ◽  
M. Edward Medof ◽  
...  

Abstract Our recent studies have shown that immune cell–produced complement provides costimulatory and survival signals to naive CD4+ T cells. Whether these signals are similarly required during effector cell expansion and what molecular pathways link locally produced complement to T-cell survival were not clarified. To address this, we stimulated monoclonal and polyclonal T cells in vitro and in vivo with antigen-presenting cells (APCs) deficient in the complement regulatory protein, decay accelerating factor (DAF), and/or the complement component C3. We found that T-cell expansion induced by DAF-deficient APCs was augmented with diminished T-cell apoptosis, whereas T-cell expansion induced by C3−/− APCs was reduced because of enhanced T-cell apoptosis. These effects were traced to locally produced C5a, which through binding to T cell–expressed C5aR, enhanced expression of Bcl-2 and prevented Fas up-regulation. The results show that C5aR signal transduction in T cells is important to allow optimal T-cell expansion, as well as to maintain naive cell viability, and does so by suppressing programmed cell death.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2790-2790
Author(s):  
Jeremy Wee Kiat Ng ◽  
Joey Lai ◽  
Tony Kiat Hon Lim ◽  
William YK Hwang ◽  
Shang Li ◽  
...  

Abstract Gamma-delta (γδ) T cells have emerged as a promising candidate for adoptive cellular immunotherapy. To harness and maximize the anti-leukemia properties of these cells, we sort to comprehensively profile the transcriptomic signatures and immune repertoire of in vitro expanded γδ T cell products. Given the reported diverse TCR γδ repertoire and naïve nature of γδ T cells found in human cord blood (CB γδ), we serially track the molecular and cellular changes in these cells upon activation in expansion cultures. Based on the established viral reactivities of γδ T cell as well as prior studies showing their cross reactivities against leukemia and cancer cells, we had previously shown that stimulating CB γδ with an irradiated EBV-LCL feeder cell-based rapid expansion protocol (REP) is capable of generating cell products with potent and specific cytotoxicity against human AML cells. In the present study, using single cell RNA sequencing (scRNA-seq) coupled with single cell TCR γδ repertoire analysis, we compared the transcription signatures between our REP expanded γδ T cell (REP γδ) and non-manipulated γδ T cells reported in literatures, showing the progressive acquisition of an adult PB derived γδ T cell (PB γδ)-like cell states. Time course analysis demonstrated complex T cell activation and maturation trajectories correlating with variable level of clonal induction throughout the course of in vitro expansion. At the end of expansion, the harvested REP γδ are predominantly of the V γ4V δ1 subtype. Nevertheless, upon exposing REP γδ to target leukemia cell line K562, outgrowth of other non-V γ4V δ1 as well as the semi-invariant V γ9V δ2 cells were observed. Taken together, our data shows that as CB γδ expand and differentiate in culture, they adopt an adult PB γδ-like program. More importantly, our data highlights the rich clonal composition of in vitro expanded CB γδ, with different clonotypes being variably activated upon exposure to different stimuli. Such characteristics can potentially overcome the challenges of cancer heterogeneity and cell persistence, with the potential of improving outcomes in cell immunotherapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1886-1886 ◽  
Author(s):  
Ehren Dancy ◽  
Alfred L. Garfall ◽  
Adam D. Cohen ◽  
Joseph A Fraietta ◽  
Megan Davis ◽  
...  

Abstract Introduction: The optimal clinical setting and cell product characteristics for chimeric antigen receptor (CAR) T cell therapy in multiple myeloma (MM) are uncertain. In CLL patients treated with anti-CD19 CAR T cells (CART19), prevalence of an early memory (early-mem) T cell phenotype (CD27+ CD45RO- CD8+) at time of leukapheresis was predictive of clinical response independently of other patient- or disease-specific factors and was associated with enhanced capacity for in vitro T cell expansion and CD19-responsive activation (Fraietta et al. Nat Med 2018). T cell fitness is therefore a major determinant of response to CAR T cell therapy. In an accompanying abstract (Cohen et al.), we report that higher percentage of early-mem T cells and CD4/CD8 ratio within the leukapheresis product are associated with favorable clinical response to anti-BCMA CAR T cells (CART-BCMA) in relapsed/refractory MM. Here, we compare leukapheresis samples from MM patients obtained at completion of induction therapy (post-ind) with those obtained in relapsed/refractory (rel/ref) patients for frequency of early-mem T cells, CD4/CD8 ratio, and in vitro T cell expansion. Methods: Cryopreserved leukapheresis samples were analyzed for the percentage of early-mem T cells and CD4/CD8 ratio by flow cytometry and in vitro expansion kinetics during anti-CD3/anti-CD28 bead stimulation. Post-ind samples were obtained between 2007 and 2014 from previously reported MM trials in which ex-vivo-expanded autologous T cells were infused post-ASCT to facilitate immune reconstitution (NCT01245673, NCT01426828, NCT00046852); rel/ref samples were from MM patients treated in a phase-one study of CART-BCMA (NCT02546167). Results: The post-ind cohort includes 38 patients with median age 55y (range 41-68) and prior exposure to lenalidomide (22), bortezomib (21), dexamethasone (38), cyclophosphamide (8), vincristine (2), thalidomide (8), and doxorubicin (4); median time from first systemic therapy to leukapheresis was 152 days (range 53-1886) with a median of 1 prior line of therapy (range 1-4). The rel/ref cohort included 25 patients with median age 58y (range 44-75), median 7 prior lines of therapy (range 3-13), and previously exposed to lenalidomide (25), bortezomib (25), pomalidomide (23), carfilzomib/oprozomib (24), daratumumab (19), cyclophosphamide (25), autologous SCT (23), allogeneic SCT (1), and anti-PD1 (7). Median marrow plasma cell content at leukapheresis was lower in the post-ind cohort (12.5%, range 0-80, n=37) compared to the rel/ref cohort (65%, range 0-95%). Percentage of early-mem T cells was higher in the post-ind vs rel/ref cohort (median 43.9% vs 29.0%, p=0.001, left figure). Likewise, CD4/CD8 ratio was higher in the post-ind vs rel/ref cohort (median 2.6 vs 0.87, p<0.0001, mid figure). Magnitude of in vitro T cell expansion during manufacturing (measured as population doublings by day 9, or PDL9), which correlated with response to CART19 in CLL, was higher in post-ind vs rel/ref cohort (median PDL9 5.3 vs 4.5, p=0.0008, right figure). Pooling data from both cohorts, PDL9 correlated with both early-mem T cell percentage (Spearman's rho 0.38, multiplicity adjusted p=0.01) and CD4/CD8 ratio (Spearman's rho 0.42, multiplicity adjusted p=0.005). Within the post-ind cohort, there was no significant association between early-mem T cell percentage and time since MM diagnosis, duration of therapy, exposure to specific therapies (including cyclophosphamide, bortezomib, or lenalidomide), or bone marrow plasma cell content at time of apheresis. However, in the post-ind cohort, there was a trend of toward lower percentage early-mem phenotype (29% vs 49%, p=0.07) and lower CD4/CD8 ratio (median 1.4 vs 2.7, p=0.04) among patients who required >2 lines of therapy prior to apheresis (n=3) compared to the rest of the cohort (n=35). Conclusion: In MM patients, frequency of the early-mem T cell phenotype, a functionally validated biomarker of fitness for CAR T cell manufacturing, was significantly higher in leukapheresis products obtained after induction therapy compared to the relapsed/refractory setting, as was CD4/CD8 ratio and magnitude of in vitro T cell expansion. This result suggests that CAR T cells for MM would yield better clinical responses at early points in the disease course, at periods of relatively low disease burden and before exposure to multiple lines of therapy. Figure. Figure. Disclosures Garfall: Novartis: Research Funding; Kite Pharma: Consultancy; Amgen: Research Funding; Bioinvent: Research Funding. Cohen:GlaxoSmithKline: Consultancy, Research Funding; Kite Pharma: Consultancy; Oncopeptides: Consultancy; Celgene: Consultancy; Novartis: Research Funding; Poseida Therapeutics, Inc.: Research Funding; Bristol Meyers Squibb: Consultancy, Research Funding; Janssen: Consultancy; Seattle Genetics: Consultancy. Fraietta:Novartis: Patents & Royalties: WO/2015/157252, WO/2016/164580, WO/2017/049166. Davis:Novartis Institutes for Biomedical Research, Inc.: Patents & Royalties. Levine:CRC Oncology: Consultancy; Brammer Bio: Consultancy; Cure Genetics: Consultancy; Incysus: Consultancy; Novartis: Consultancy, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership, Research Funding. Siegel:Novartis: Research Funding. Stadtmauer:Janssen: Consultancy; Amgen: Consultancy; Takeda: Consultancy; Celgene: Consultancy; AbbVie, Inc: Research Funding. Vogl:Karyopharm Therapeutics: Consultancy. Milone:Novartis: Patents & Royalties. June:Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Celldex: Consultancy, Membership on an entity's Board of Directors or advisory committees; Immune Design: Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding. Melenhorst:Novartis: Patents & Royalties, Research Funding; Incyte: Research Funding; Tmunity: Research Funding; Shanghai UNICAR Therapy, Inc: Consultancy; CASI Pharmaceuticals: Consultancy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2601-2601
Author(s):  
Sophie de Guibert ◽  
Jean-Baptiste Thibert ◽  
Céline Bonnaventure ◽  
Patricia Ame-Thomas ◽  
Céline Pangault ◽  
...  

Abstract T cells carrying a γδ TCR account for less than 5% of CD3pos T cells in healthy individuals but are key effectors of innate immunity through the recognition of some unprocessed nonpeptide antigens of both self and foreign origin. Whereas the Vδ2 subpopulation represents more than 70% of peripheral blood γδ T cells, the Vδ1 subset is mainly located in the mucosal tissue. Increasing evidence suggest that γδ T cells have potent antitumor activity and are implicated in the defense against some haematological and epithelial malignancies. Moreover, Vδ2 T cells constitute an attractive immunotherapy strategy since they could be expanded and activated both in vivo and in vitro using synthetic phosphoantigens and aminobiphosphonates. Such strategies are currently tested in preliminary clinical trials, notably in follicular lymphoma (FL). However, an exhaustive phenotypic and functional characterisation of γδ T cells in this disease, including tumor infiltration, is still lacking. We first explored the composition of FL microenvironment using a multicolour flow cytometry analysis. We observed a significant decrease in the percentage of myeloid (LinnegCD11cposHLADRpos) and plasmacytoid (LinnegCD123posHLADRpos) dendritic cells (P = .0011 and P &lt; .0001, respectively) in FL compared to normal secondary lymphoid organs. In addition, among CD3pos T cells, the proportion of follicular helper T cells (CD4posCXCR5posICOShi) was increased (P = .001) whereas regulatory T-cell (CD4posCD25posfoxp3pos) frequency was not altered. When considering the γδ T-cell compartment, we first highlighted a reduction of the Vδ2 subset in normal tonsils (Vδ2 = 23.48 ± 0.15% of γδ T cells, n = 11) when compared with peripheral blood. Remaining non-δ2 γδT cells were predominantly δ1 T cells. More importantly, infiltrating γδ T cells were significantly decreased in lymph node biopsies from FL patients (mean = 0.48 ± 0.4% of CD3pos T cells; n = 27) when compared both to normal tonsils (mean = 2.49 ± 1.6% of CD3pos T cells; n = 33) (P &lt; .0001) and reactive lymph nodes (mean = 2.64 ± 2.6% of CD3pos T cells; n = 9) (P = .0009). This reduction affected both the Vδ1 and Vδ2 T-cell subsets. The functionality of γδ T cells was then assessed by the measurement of cell expansion and production of IFN-γ upon stimulation with the isopentenyl pyrophosphate (IPP) phosphoantigen. Amplification rate in vitro reached 14.6 ± 4.6 fold in tonsils (n = 10) but only 4.36 ± 1.9 fold in FL samples (n = 7) (P &lt; .002) after 5 days of culture in the presence of IPP + IL-2 + IL-15. When focusing on the δ2 subset, this difference was further increased with a 40-fold amplification in tonsil and a 3-fold amplification in FL samples (P = .0004). Evaluation of IFN-γ production using ELISPOT assay revealed a high heterogeneity among tumor samples since 1 to 40% of δ2 T cells were able to respond to IPP stimulation (n = 7). Preliminary data argued for an association between the quantity and the functionality of γδ T cells in FL tumors. In conclusion, we reported an alteration of γδ T cell frequency and functionality within FL tumor niche. The next purpose will be to correlate these in vitro defects with in vivo clinical responses to immunotherapy strategies targeting γδ T cells.


2005 ◽  
Vol 201 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Rong Zeng ◽  
Rosanne Spolski ◽  
Steven E. Finkelstein ◽  
SangKon Oh ◽  
Panu E. Kovanen ◽  
...  

Interleukin (IL)-21 is the most recently recognized of the cytokines that share the common cytokine receptor γ chain (γc), which is mutated in humans with X-linked severe combined immunodeficiency. We now report that IL-21 synergistically acts with IL-15 to potently promote the proliferation of both memory (CD44high) and naive (CD44low) phenotype CD8+ T cells and augment interferon-γ production in vitro. IL-21 also cooperated, albeit more weakly, with IL-7, but not with IL-2. Correspondingly, the expansion and cytotoxicity of CD8+ T cells were impaired in IL-21R−/− mice. Moreover, in vivo administration of IL-21 in combination with IL-15 boosted antigen-specific CD8+ T cell numbers and resulted in a cooperative effect on tumor regression, with apparent cures of large, established B16 melanomas. Thus, our studies reveal that IL-21 potently regulates CD8+ T cell expansion and effector function, primarily in a synergistic context with IL-15.


Sign in / Sign up

Export Citation Format

Share Document