G2/M Arrest Sensitizes Chronic Myelogenous Leukemia Cells to TRAIL-Induced Apoptosis

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4465-4465
Author(s):  
David Devlin ◽  
Eva Szegezdi ◽  
Paavilainen Tanja ◽  
Orsolya Orosz ◽  
Michael O'Dwyer ◽  
...  

Abstract Abstract 4465 The death ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receives great interest as it targets and kills cancerous cells, but not non-transformed cells. While it is in phase I/II clinical trials for a range of solid tumours, the generally low sensitivity of leukemia cells to TRAIL makes it a less attractive therapeutic for these cancers. We found that doxorubicin and cytarabine, agents that induce DNA damage and impair cell cycle progression, can sensitize CML cells to TRAIL with CI<1 at Fa of ED25 and ED50 (based on median-effect method using the isobologram equation). Inhibition of the cell cycle checkpoint kinases Chk1/2 with UCN-01 did not influence TRAIL-induced apoptosis nor could it abolish the sensitizing effect of doxorubicin. Interestingly, inhibition of Ataxia Telangiectasia Mutated (ATM), a key DNA damage response kinase, with KU-55933 induced a G2/M arrest and enhanced TRAIL-induced apoptosis. Inhibition of ATM alone induced 22±3.1% apoptosis and increased TRAIL-induced apoptosis from 27.2±4.7% to 68±7.2%. Cell cycle analysis revealed that while the proportion of cells in the G0/G1 and S phases slightly increased, the proportion of the cells in the G2/M phase dropped by 31.6±3.2% (p<0.05) indicating that G2/M arrested cells were more sensitive to TRAIL than cells in G0/G1 and S phases. TRAIL-induced CML cell death was also synergistically enhanced by arresting the cells in G2/M using the microtubule disrupting drugs, nocodazole or colcemide. Cells were treated with a concentration of nocodazole or colcemide that induced above 90% G2/M arrest for 16 h (0.3 mM and 0.1 mg/ml, respectively) followed by treatment with 250 ng/ml of TRAIL for 24 h. Nocodazole, colcemide and TRAIL individually induced 19±3.7% 26.3±4.4% and 27.2±4.7% cell death, while combination of nocodazole or colcemide with TRAIL resulted 89±6.8% and 93±5.9% cell death, respectively. In summary, we found that induction of DNA damage sensitizes CML cells to TRAIL and that TRAIL-sensitivity of CML cells is cell cycle-dependent. Disclosures: O'Dwyer: Novartis: Honoraria.

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 750
Author(s):  
Kiyohiro Ando ◽  
Akira Nakagawara

Unrestrained proliferation is a common feature of malignant neoplasms. Targeting the cell cycle is a therapeutic strategy to prevent unlimited cell division. Recently developed rationales for these selective inhibitors can be subdivided into two categories with antithetical functionality. One applies a “brake” to the cell cycle to halt cell proliferation, such as with inhibitors of cell cycle kinases. The other “accelerates” the cell cycle to initiate replication/mitotic catastrophe, such as with inhibitors of cell cycle checkpoint kinases. The fate of cell cycle progression or arrest is tightly regulated by the presence of tolerable or excessive DNA damage, respectively. This suggests that there is compatibility between inhibitors of DNA repair kinases, such as PARP inhibitors, and inhibitors of cell cycle checkpoint kinases. In the present review, we explore alterations to the cell cycle that are concomitant with altered DNA damage repair machinery in unfavorable neuroblastomas, with respect to their unique genomic and molecular features. We highlight the vulnerabilities of these alterations that are attributable to the features of each. Based on the assessment, we offer possible therapeutic approaches for personalized medicine, which are seemingly antithetical, but both are promising strategies for targeting the altered cell cycle in unfavorable neuroblastomas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kalyan Mahapatra ◽  
Sujit Roy

AbstractAs like in mammalian system, the DNA damage responsive cell cycle checkpoint functions play crucial role for maintenance of genome stability in plants through repairing of damages in DNA and induction of programmed cell death or endoreduplication by extensive regulation of progression of cell cycle. ATM and ATR (ATAXIA-TELANGIECTASIA-MUTATED and -RAD3-RELATED) function as sensor kinases and play key role in the transmission of DNA damage signals to the downstream components of cell cycle regulatory network. The plant-specific NAC domain family transcription factor SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) plays crucial role in transducing signals from both ATM and ATR in presence of double strand breaks (DSBs) in the genome and found to play crucial role in the regulation of key genes involved in cell cycle progression, DNA damage repair, endoreduplication and programmed cell death. Here we report that Arabidopsis exposed to high salinity shows generation of oxidative stress induced DSBs along with the concomitant induction of endoreduplication, displaying increased cell size and DNA ploidy level without any change in chromosome number. These responses were significantly prominent in SOG1 overexpression line than wild-type Arabidopsis, while sog1 mutant lines showed much compromised induction of endoreduplication under salinity stress. We have found that both ATM-SOG1 and ATR-SOG1 pathways are involved in the salinity mediated induction of endoreduplication. SOG1was found to promote G2-M phase arrest in Arabidopsis under salinity stress by downregulating the expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1, and CYCB1;1, while upregulating the expression of WEE1 kinase, CCS52A and E2Fa, which act as important regulators for induction of endoreduplication. Our results suggest that Arabidopsis undergoes endoreduplicative cycle in response to salinity induced DSBs, showcasing an adaptive response in plants under salinity stress.


2018 ◽  
Author(s):  
Dustin Lane

Programmed cell death signaling networks are frequently activated to coordinate the process of cell differentiation, and a variety of apoptotic events can mediate the process. This can include the ligation of death receptors, the activation of downstream caspases, and the induction of chromatin fragmentation, and all of these events can occur without downstream induction of death. Importantly, regulators of programmed cell death also have established roles in mediating differentiation. This review will provide an overview of apoptosis and its regulation by Inhibitors of Apoptosis (IAPs) and Bcl-2 family members. It will then outline the cross-talk between NF-ĸB and apoptotic signaling in the regulation of apoptosis before discussing the function of these regulators in the control of cell differentiation. It will end on a discussion of how a DNA damage-directed, cell cycle-dependent differentiation program may be controlled across multiple passages through cell cycle, and will assert that the failure to properly differentiate is the underlying cause of cancer.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 578-578 ◽  
Author(s):  
Peter G Smith ◽  
Tary Traore ◽  
Steve Grossman ◽  
Usha Narayanan ◽  
Jennifer S Carew ◽  
...  

Abstract Abstract 578 MLN4924 is an investigational small molecule inhibitor of NEDD8-activating enzyme that has shown clinical activity in a Phase I clinical trial in Acute Myelogenous Leukemia (AML). To identify potential combination partners of MLN4924 we performed a high-throughput viability screen in AML cells with 40 approved and investigational agents. In vitro characterization of AML cell lines revealed two distinct cell cycle phenotypes suggesting alternate mechanism of action following MLN4924 inhibition of NAE. One group demonstrated moderate S-phase accumulation with greater than 4N DNA content consistent with DNA-rereplication as a result of CDT1 dysregulation. The second group demonstrated distinct and rapid accumulation of subG1 cells without S-phase accumulation or DNA re-replication suggesting induction of apoptosis and cell death. These observations led us to choose two cells lines representative of each mechanism to understand potential for synergy in AML cells. Two hypomethylating agents were included in the screen (decitabine and azacitidine) and were found to be synergistic with MLN4924 by Combination Index and Blending Synergy Analysis. These data were confirmed with a second NAE inhibitor that is structurally dissimilar to MLN4924. The combination of azacitidine and MLN4924 were shown to result in significantly increased DNA-damage and cell death compared to single agent alone as measured by Western Blotting and FACS analysis of cell cycle distributions. In vivo studies were performed in HL-60 and THP-1 xenografts using MLN4924 on a clinically relevant dosing schedule twice weekly. Single agent azacitidine at its Maximum Tolerated Dose (MTD) had minimal activity in the HL-60 model and was combined with a sub-optimal dose of MLN4924 that when combined induced complete and sustained tumor regressions. The mechanism for the apparent synthetic lethality in this in vivo model is currently under evaluation; however it is supported by a dramatic elevation in DNA damage and cleaved caspase-3 in vivo in the combination arm. A second xenograft model (THP-1) that was also insensitive to single agent azacitidine treatment underwent complete and sustained tumor regressions when combined with MLN4924. Thus MLN4924 and azacitidine can combine to produce synergistic antitumor activity in pre-clinical models of AML. Coupled with their non-overlapping clinical toxicities these data suggest the potential for future combination studies in clinical trials. Disclosures: Smith: Millennium Pharmaceuticals: Employment. Traore:Millennium Pharmaceuticals: Employment. Grossman:Millennium Pharmaceuticals: Employment. Narayanan:Millennium Pharmaceuticals: Employment. Carew:Millennium Pharmaceuticals: Research Funding. Lublinksky:Millennium Pharmaceuticals: Employment. Kuranda:Millennium Pharmaceuticals: Employment. Milhollen:Millennium Pharmaceuticals: Employment.


2021 ◽  
Author(s):  
Mireya Ruiz-Losada ◽  
Raul González ◽  
Ana Peropadre ◽  
Antonio Baonza ◽  
Carlos Estella

SummaryExposure to genotoxic stress promotes cell-cycle arrest and DNA repair or apoptosis. These “life” or “death” cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, how p53 activity is precisely regulated is essential to maintain tissue homeostasis and to prevent cancer development. Here we demonstrate that Drosophila p53 pro-apoptotic activity is regulated by the G2/M kinase Cdk1. We find that cell cycle arrested or endocycle-induced cells are refractory to ionizing radiation induced apoptosis. We show that the p53 protein is not able to bind to and to activate the expression of the pro-apoptotic genes in experimentally arrested cells. Our results indicate that p53 genetically and physically interacts with Cdk1 and that p53 pro-apoptotic role is regulated by the cell cycle status of the cell. We propose a model in which cell cycle progression and p53 pro-apoptotic activity are molecularly connected to coordinate the appropriate response after DNA damage.


2000 ◽  
Vol 113 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
J.M. Frade

During their early postmitotic life, a proportion of the nascent retinal ganglion cells (RGCs) are induced to die as a result of the interaction of nerve growth factor (NGF) with the neurotrophin receptor p75. To analyse the mechanisms by which NGF promotes apoptosis, an in vitro culture system consisting of dissociated E5 retinal cells was established. In this system, NGF-induced apoptosis was only observed in the presence of insulin and neurotrophin-3, conditions that favour the birth of RGCs and other neurones expressing the glycoprotein G4. The pro-apoptotic effect of NGF on the G4-positive neurones was evident after 10 hours in vitro and was preceded by a significant upregulation of cyclin B2, but not cyclin D1, and the presence of mitotic nuclei in these cells. Brain-derived neurotrophic factor prevented both the increase of cyclin B2 expression in the G4-positive neurones and the NGF-induced cell death. Finally, pharmacologically blocking cell-cycle progression using the cyclin-dependent kinase inhibitor roscovitine prevented NGF-induced cell death in a dose-dependent manner. These results strongly suggest that the apoptotic signalling initiated by NGF requires a driving stimulus manifested by the neuronal birth and is preceded by the unscheduled re-entry of postmitotic neurones into the cell cycle.


2020 ◽  
Author(s):  
Asmita Sharda ◽  
Tripti Verma ◽  
Nikhil Gadewal ◽  
Sanjay Gupta

Abstract Background - Histone Post Translational Modifications (PTMs) change in a cell cycle dependent manner and also orchestrate the DNA repair process for radiation induced DNA damage. Mitosis is the most radiosensitive phase of the cell cycle but the epigenetic events that regulate its radiosensitivity remain elusive.Results - This study explored the dynamics between histone marks H3S10/S28ph, H3K9ac and γH2AX during mitotic DNA damage response. The presence of a mononucleosome level association between γH2AX and H3S10ph was observed only during mitosis. This association was abrogated upon cell cycle progression and chromatin de-condensation, concomitant with chromatin recruitment of DNA repair proteins Ku70 and Rad51. Moreover, the levels of H3S10/28ph remained unchanged upon DNA damage during mitosis, but decreased in a cell cycle dependent manner upon mitotic exit. However, the population that arose after mitotic progression of damaged cells comprised of binucleated tetraploid cells. This population was epigenetically distinct from interphase cells, characterized by reduced H3S10/S28ph, increased H3K9ac and more open chromatin configuration. These epigenetic features correlated with decreased survival potential of this population. The low levels of H3S10/28ph were attributed to decreased protein translation and chromatin recruitment of histone kinase Mitogen and Stress-activated Kinase 1 (MSK1) along with persistent levels of Protein phosphatase1 catalytic subunit α (PP1α). Conclusions – This study suggests that a unique epigenetic landscape attained during and after mitotic DNA damage collectively contributed to mitotic radiosensitivity. The findings of this study have potential clinical significance in terms of tackling resistance against anti-mitotic chemotherapeutic agents.


2001 ◽  
Vol 21 (15) ◽  
pp. 4929-4937 ◽  
Author(s):  
Susumu Adachi ◽  
Alvaro J. Obaya ◽  
Zhiyong Han ◽  
Noemi Ramos-Desimone ◽  
James H. Wyche ◽  
...  

ABSTRACT The c-myc proto-oncogene encodes a transcription factor that participates in the regulation of cellular proliferation, differentiation, and apoptosis. Ectopic overexpression of c-Myc has been shown to sensitize cells to apoptosis. We report here that cells lacking c-Myc activity due to disruption of the c-myc gene by targeted homologous recombination are defective in DNA damage-initiated apoptosis in the G2 phase of the cell cycle. The downstream effector of c-Myc is cyclin A, whose ectopic expression in c-myc −/− cells rescues the apoptosis defect. The kinetics of the G2 response indicate that the induction of cyclin A and the concomitant activation of Cdk2 represent an early step during commitment to apoptosis. In contrast, expression of cyclins E and D1 does not rescue the apoptosis defect, and apoptotic processes in G1 phase are not affected in c-myc −/− cells. These observations link DNA damage-induced apoptosis with cell cycle progression and implicate c-Myc in the functioning of a subset of these pathways.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1021-1021
Author(s):  
Ronan T. Swords ◽  
Kevin R. Kelly ◽  
Peter G. Smith ◽  
James J. Gansey ◽  
Devalingam Mahalingam ◽  
...  

Abstract Abstract 1021 Poster Board I-43 The coordinated balance between the synthesis and degradation of proteins is an important regulator of cancer cell biology. The ubiquitin-proteasome system (UPS) is responsible for the timed destruction of many proteins including key mediators of fundamental signaling cascades and critical regulators of cell cycle progression and transcription. Within the UPS, the E3 ligases are multi-protein complexes whose specificity is established by their individual components as well as post-translational modifications by various factors including the ubiquitin-like molecule, Nedd8. The Nedd8 activating enzyme (NAE) has been identified as an essential regulator of the Nedd8 conjugation pathway, which controls the activity of the cullin-dependent E3 ubiquitin ligases. The cullins direct the ubiquitination and subsequent degradation of many proteins with important roles in cell cycle progression (p27, cyclin E), DNA damage (Cdt-1), stress response (NRF-2, HIF1α) and signal transduction (IκBα). Acute myeloid leukemia (AML) is a disease of the elderly and prognosis is extremely poor with a median overall survival of just 2 months for untreated patients. As such, novel therapeutic strategies are urgently needed to improve clinical outcomes. Considering that Nedd8-mediated control of protein homeostasis is vitally important for the survival of AML cells, we hypothesized that disrupting this process would inhibit proliferation and induce cell death. We tested this hypothesis by investigating the preclinical anti-leukemic activity of MLN4924, a novel first in class small molecule inhibitor of the Nedd8 activating enzyme. MLN4924 induced DNA damage followed by rapid and selective caspase-dependent cell death in AML cell lines and primary AML cells from patients, but not in peripheral blood mononuclear cells from healthy donors. Transient exposure to MLN4924 impaired colony formation in a dose-dependent manner. Kinetic analysis of drug-induced effects on cell cycle distribution revealed that AML cells treated with MLN4924 initially arrested at the G1 transition prior to their subsequent accumulation in the sub-G1 compartment. Assays conducted using MV-411 cells with and without stable shRNA-mediated knockdown of FLT3 expression demonstrated that MLN4924 is highly effective independent of FLT3 status. Further investigation revealed that the activity of MLN4924 was preserved when cells were co-cultured with bone marrow stromal cells indicating that it has the ability to overcome the effects of stromal-mediated survival signaling that has been established to blunt the efficacy of relevant standard of care agents. MLN4924 induced a dose and time dependant increase in the expression of phospo-IκB, an important target for degradation through the Nedd8 conjugation pathway. The inhibitory effects of MLN4924 on NFκB were confirmed by demonstrating that the transcriptional activity of the NFκB p65 subunit was significantly reduced following drug exposure. Moreover, treatment of immunodeficient mice implanted with HL-60 human leukemia cells with MLN4924 led to an inhibition of neddylated cullins, accumulation of phospho-IκBα and achieved complete and stable disease regression. Our results indicate that MLN4924 is a highly promising novel agent for the treatment of AML and warrants further evaluation in clinical trials. Disclosures: Smith: Millennium Pharmaceuticals: Employment. Gansey:Millennium Pharmaceuticals: Employment.


Sign in / Sign up

Export Citation Format

Share Document