A T-Cell Specific Element Activates the TAL1 Oncogene Via an Interchromosomal Interaction During Leukemogenesis

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3507-3507
Author(s):  
Yuanyuan Kang ◽  
Bhavita Patel ◽  
Kairong Cui ◽  
Keji Zhao ◽  
Yi Qiu ◽  
...  

Abstract Abstract 3507 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant disease of thymocytes that mainly affects children and has very poor prognosis with high rates of relapse. A prominent feature observed in 60% of T-ALL childhood patients is the ectopic expression of a key hematopoietic transcription factor TAL1/SCL. Although several enhancers has been identified to play an important role in normal hematopoietic differentiation, the histone modification patterns and chromatin organization over the whole TAL1 locus reveled that none of them is active in T-ALL cell lines such as Jurkat and Rex cells. It remains currently unknown how TAL1 is activated in the majority of T-ALL patients lacking the TAL1 locus rearrangements. To understand the molecular mechanism underlying regulation of the TAL1 oncogene in leukemic T-cells, we employed circularized chromosome conformation capture (4C) methodology to identify new regulatory elements that activate TAL1 specifically in T-ALL leukemia. Using the TAL1 promoter 1a as the bait, we discovered that the TAL1 promoter 1a interacts with the TIL16 element (TAL1 interacting locus in chromosome 16) that is located at ∼15 Kb downstream of T-cell specific CD2BP2 gene in T-ALL cell line Jurkat, but not in erythroid progenitor K562 cells. The CD2BP2 protein is a cellular adapter protein that was originally identified as a binding partner of the T cell adhesion protein CD2 in the context of T cell signaling. The TIL16 element contains the bind sites for several transcription factors that are important for hematopoiesis such as C-Maf, Pax5, HoxA7 and USF2. The inter-chromosomal interaction between the TIL16 and the TAL1 promoter 1a was further confirmed by chromosome conformation capture (3C) assay in three TAL1 over-expressing T-ALL cell lines, Jurkat, REX and Molt4, but not in K562 cells. Recent genome wide study has correlates H3K4 mono- or dimethyl marks with distal enhancers while trimethyl H3K4 is enriched in promoters of active genes. To further test if the TIL16 acts as T-cell specific enhancer for TAL1 activation in T-ALL cells, we carried out ChIP-seq and ChIP analysis in CD4 T cells, Jurkat, and K562 cells. We found that the TIL16 element is specifically marked by H3K4me1 in Jurkat and CD4+ T-cells but not in K562 cells. The enrichment of H3K4me1 is correlated with the binding of c-Maf, a T-cell specific transcription factor. To further test whether the TIL16 element contributes to transcription activity, a DNA fragments containing the TIL16 element were cloneed into SV40 minimal promoter driven luciferase reporter and introduced into K562 and several T-ALL cell lines. Compared to the pGL3-SV40 vector that showed only minimal luciferase activity, the 1 Kb TIL element specifically activated transcription of the luciferase reporter in T-ALL cells, but not in erythroid progenitor K562 cells suggesting that the TIL16 element functions as a T-cell specific TAL1 enhancer. Thus, our data revealed a novel epigenetic mechanism by which the TAL1 oncogene is ectopically activated in T-cell leukemia. Disclosures: No relevant conflicts of interest to declare.

2004 ◽  
Vol 26 (5) ◽  
pp. 243-246 ◽  
Author(s):  
W. Tuo ◽  
W. C. Davis ◽  
R. Fetterer ◽  
M. Jenkins ◽  
P. C. Boyd ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1743-1743
Author(s):  
Mathew L. Lesniewski ◽  
Laura R. Fanning ◽  
Margeret Kozik ◽  
Richard P. Weitzel ◽  
Yeal Hegerfeldt ◽  
...  

Abstract Introduction: Umbilical cord blood (UCB) CD4+ T-cells have been shown to express significant levels of BACH2 transcription factor protein compared to adult blood (AB) CD4+ T-cells. Previously, NFAT1 siRNA knockdown of UCB T-cells exhibited a significantly higher BACH2 mRNA expression, and IFN-γ, TNF-α. and CTLA-4 mRNA levels were significantly suppressed. BACH2, a member of the b-Zip family, has been shown to act as a heterodimer with the bZip protein MafK, as a transcriptional inhibitor via recruitment of a histone deacetylase class II complex (HDAC II) in differentiating B-cells, and neurons. Due to observed inverse expression of BACH2 and NFAT1 in UCB CD4+ T-cells, we hypothesized that BACH2 may regulate transcription factors known to bind with NFAT1 including AP-1 proteins JunB and FosL1. We tested this by siRNA knockdown of BACH2 in primary UCB-derived CD4+ T-cells. Key developmental transcription factors JUNB, FosL1, NFAT1 and downstream IFN-γ, and TNF-α were mRNA analyzed. Methods: UCB T-cells were purified using autoMACs system (Miltenyi). After overnight culture, T-cells were transfected with BACH2 siRNA (Dharmacon) using Amaxa Nucleofector system (Amaxa Inc). Both siRNA treated and control cells were incubated in media for 18 hours, and then stimulated using anti-CD3/anti-CD28 antibodies (BD BioScience). Aliquots of cells were collected at specified time points post-stimulation for protein and total RNA isolation. The relative change in mRNA levels for BACH2, JUNB, FosL1, IFN-γ, NFAT1, and TNF-α were determined by Lightcycler SybrGreen real time RT-PCR system (Roche). siRNA knockdown of BACH2 protein in transfected UCB T-cells was confirmed by western blot. Results: Real-time RT-PCR of BACH2 siRNA treated UCB CD4+ T-cells stimulated with anti-CD3/CD28 antibodies and analyzed after 6 hrs of stimulation showed a 4 log increase in FosL1 and NFAT1 mRNA, a 3 log increase in JunB mRNA, a 5 log increase in IFN-γ as compared to stimulated control UCB T-cells. TNF-α mRNA was decreased by 5 logs in BACH2 siRNA treated UCB T-cells as compared to control. CD3/CD28 stimulated untransfected UCB T-cells were previously shown to have decrease expression of NFAT1, JunB, FosL1, IFN-γ, and TNF-α, and in UCB T-cells compared to stimulated AB T-cells. Conclusions: BACH2 expression correlates with an inhibition of expression of AP1 transcription regulatory proteins in UCB T-cells during primary CD3/CD28 stimulation. The complete activation of the T-cell requires the activation of AP1 by CD28 pathway otherwise the antigen presenting cell signals the T-cell to enter anergy. In UCB CD4+ T-cells express BACH2, which acts as a transcriptional inhibitor of two critical AP1 genes, JUNB and FosL1, which mediate the CD28 co-stimulatory pathway. These results further suggests that expression of BACH2 in UCB T-cells may contribute to lower incidence of alloreactivity observed in leukemia patients receiving UCB stem cells compared to AB bone marrow stem cells and thus leads to low GVHD, and contribute to the weak Th1 response seen in stimulated UCB T-cells by reduced amounts of AP1 protein available for activating the T-cell.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2222-2222
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Inge Jedema ◽  
Roelof Willemze ◽  
Henk-Jan Guchelaar ◽  
...  

Abstract Reactivation of adenovirus (ADV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV) can cause serious morbidity and mortality during the prolonged period of immune deficiency following allogeneic stem cell transplantation. It has been shown that adoptive transfer of donor-derived virus-specific T cells can be a successful strategy to control viral reactivation. To provide safe and effective anti-viral immunotherapy, we aimed to generate combined CD8+ and CD4+ T cell lines with high specificity for a broad range of viral epitopes. Isolation by the IFNg capture assay of virus-specific T cells that produce IFNg upon activation allows the generation of highly specific T cell lines without the need for extensive culture. However, it has been recently shown that specific upregulation of the co-stimulatory molecule CD137 upon antigen-specific activation of CD8+ and CD4+ T cells can also be used for isolation. We therefore analyzed IFNg production and CD137 expression by CD8+ and CD4+ T cells upon incubation of peripheral blood mononuclear cells (PBMC) from seropositive donors with peptides corresponding to 17 defined MHC class I restricted minimal epitopes from 10 different ADV, CMV, EBV and influenza (FLU) proteins, and 15-mer or 30-mer peptides containing MHC class II restricted epitopes from CMV pp65 or ADV hexon. Using tetramer and intracellular IFNg staining we first determined the fraction of CD8+ T cells that produced IFNg upon activation with the minimal epitopes. Specific IFNg production was observed for 58–100% of tetramer+ CD8+ T cells specific for CMV pp65 (n=6), and 83% for FLU (n=1), but only 18–58% for CMV pp50 (n=3) or IE-1 (n=3), 4–91% for EBV latent (n=3) and lytic (n=3) epitopes, and 41–63% for ADV hexon (n=2). In contrast to the variation in the fraction of IFNg-producing cells, we observed homogeneous upregulation of CD137 by the virus-specific tetramer+ T cell populations upon activation. In 2 cases where no CD137 expression by tetramer+ T cells could be detected, no IFNg production was observed either. These data suggest that the majority of CD8+ T cells specific for CMV pp65 or FLU can be isolated on basis of IFNg production, but only part of CD8+ T cell populations specific for other viral proteins, while complete virus-specific CD8+ T cell populations may be isolated on basis of CD137 expression. Activation of CD4+ T cells specific for CMV pp65 or ADV hexon with 15-mer or 30-mer peptides induced both specific IFNg production and CD137 expression. To investigate whether multiple virus-specific T cell populations could be isolated simultaneously, we next determined the kinetics of IFNg production after activation with defined MHC class I epitopes or peptides containing MHC class II epitopes. CMV- and EBV-specific CD8+ T cells and CMV-specific CD4+ T cells showed a rapid induction of IFNg production, which peaked after 4 hours and decreased thereafter. In contrast, ADV- and FLU-specific CD8+ T cells and ADV-specific CD4+ T cells, predominantly having a more early differentiation phenotype (CD27+CD28+) compared to CMV- and EBV-specific T cells, showed peak IFNg production after 8 hours that continued for more than 48 hours. This difference in phenotype and IFNg kinetics may suggest that the persistent and frequent presentation of CMV and EBV epitopes in vivo, in contrast to an intermittent exposure to ADV and FLU epitopes, drives differentiation and shapes the kinetics of the IFNg response of specific T cells. Kinetic analysis of CD137 expression showed uniform upregulation by virus-specific CD8+ T cell populations from day 1 to day 4 after activation, which peaked at day 2, suggesting that this may be the optimal time point for CD137-based isolation. In a limited number of experiments, virus-specific CD8+ and CD4+ T cells could be isolated based on CD137 expression within the same timeframe. These data indicate that virus-specific T cell populations can be more efficiently isolated at one time point on basis of CD137 expression than on basis of IFNg production, due to differences in IFNg kinetics. In conclusion, this study shows that T cell lines generated by CD137 isolation may comprise a significant number of virus-specific T cells which do not produce IFNg, but may have other effector functions. Furthermore, CD137-based enrichment may be more robust and allows the efficient simultaneous isolation of multiple virus-specific T cell populations due to uniform kinetics of CD137 expression.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4870-4870
Author(s):  
Leonidas Zierock ◽  
Wolfgang Melchinger ◽  
Bettina Wehrle ◽  
Juergen Finke ◽  
Reinhard Marks

Abstract Abstract 4870 Since the succesful treatment of T cell lymphoma remains to be problematic, identification of new pharmacological targets in this malignancies are desperately needed. The AMPK-Rheb-mTOR signaling pathway plays an important role in regulating processes such as proliferation and proteinsynthesis according to energy and nutrient levels in normal and malignant T cells. Inhibitors of mTOR have shown promising results in clinical trials in several lymphoma types. Similarly, recent data could prove inhibitors of farnesyltransferase (FTI) to be effective as a single agent in certain subtypes of T cell lymphoma. Despite divergent data regarding the molecular target of FTI action, recently published work suggest inhibition of prenylation of the GTPase Rheb as putative mechanism for the antineoplastic effects of FTI (Basso et al., J Biol Chem, 2005). Therefore, combining inhibition of mTOR and Rheb might result in increased inhibition of T cell lymphoma proliferation. To investigate this hypothesis, human T cell lymphoma cell lines DERL-2 (originated from hepatosplenic gamma-delta T cell lymphoma), Karpas-299 (originated from anaplastic large cell T cell lymphoma) and normal human CD4+ T cells were incubated with a combination of everolimus as mTOR inhibitor and FTI (lonafarnib, SCH-66336) or the single agents. While both substances showed an additive combined anti-proliferative effect in DERL-2 cells, proliferation of Karpas cells were more susceptible to inhibition by FTI. On a molecular level, despite substantial growth inhibition in both cell lines by everolimus alone, phosphorylation of 4EBP1 and p70S6K remained unaffected, while FTI mediated reduction of Karpas cell proliferation was associated with a substantial decrease in AMPK phosphorylation together with an overexpression of p27kip, which could not be observed in DERL-2 cells. In contrast, incubation of stimulated human CD4+ T cells with the drugs alone or in combination did not result in changes in the phosporylation status of AMPK. Nevertheless, in contrast to everolimus, FTI induced a reduction of total protein expression of AMPK and other proteins, e.g. AKT. In addition, contrary to the observations in the malignant T cells, FTI treatment of unstimulated human CD4+ T cells resulted even in an increase of AMPK-phosphorylation. A hint for the explanation of these conflicting data came from analyses of Rheb expression in the examined cell types. While Rheb was easily detectable in the malignant T cell lines and the stimulated CD4+ T cells, it was almost absent in unstimulated CD4+ T cells. A model derived from this findings is that FTI effects depend on different targets available for inhibition of prenylation according to the activation or differentiation status of the T cells. While Rheb might be the target in malignant or activated T cells, another target, e.g. phosphatases, might be responsible for the FTI effect in resting T cells where Rheb is not available. In Karpas cells a particular connection between Rheb and AMPK might exist, as described for other cell lines (Lacher et al., Oncogene, 2010). Inhibition of this Rheb-AMPK axis might explain the particular gowth inhibiting effect of FTI in this model of anaplastic large T cell lymphoma. Nevertherless, the presented data show a combined effect of mTOR inhibitors and FTI for the potent treatment of T cell lymphoma involving different molecular mechanisms according to the lymphoma subtype. Disclosures: Finke: Fresenius Biotech GmbH: Honoraria, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3885-3885 ◽  
Author(s):  
Samantha Miner ◽  
Sawa Ito ◽  
Kazushi Tanimoto ◽  
Nancy F. Hensel ◽  
Fariba Chinian ◽  
...  

Abstract The immune-editing effect of myeloid leukemia has recently been reported in several studies. We previously demonstrated that the K562 leukemia-derived cell line suppresses T cell proliferation, which suggests that myeloid leukemia may function in a similar way to myeloid derived suppressor cells (MDSC). While the mechanism of suppression in leukemia is not fully understood, recent murine and human studies suggest that the STAT3 and arginase pathways play a key role in the immunosuppressive function of MDSC. We hypothesized that myeloid leukemia utilizes the MDSC STAT3 and arginase pathway to evade immune control, and block anti-leukemic immune responses. To evaluate the suppressive capacity of myeloid leukemia on T cell proliferation, we isolated CD34+ blasts and myeloid derived suppressor cells (MDSC: CD11b+CD14+) from blood of primary leukemia samples by FACS sorting (n=5). These cells were co-cultured with CFSE-labeled CD4+ T cells (n=9), previously isolated from healthy donor PBMCs using an automated cell separator (RoboSep). After stimulating with CD3/CD28 Dynabeads (Invitrogen, New York, USA) for 72 hours, proliferation was measured by CFSE dilution of the viable cell population. In three myeloid leukemias studied, CD4+ T cell proliferation was significantly suppressed in the presence of primary CD34 blasts and MDSC cells (p<0.001). Interestingly, CD34 blasts demonstrated a greater suppressive effect on T cells compared to MDSC cells for these samples (not statistically significant p=0.61). Next we repeated the proliferation assay using five leukemia cell lines: THP-1 and AML1 (derived from AML), K562 and CML1 (derived from CML), and the Daudi lymphoid-derived leukemia cell line. After staining with cell tracer dye and irradiating 100Gy, the cells were co-incubated with CFSE-labeled CD4+ T cells from healthy volunteers (n=6). We found that CD4+ T cell proliferation in the presence of the myeloid leukemia cell lines was significantly suppressed (mean proliferation 5.7±0.9% to 26.1±10.7%: p<0.0001 to 0.05) compared to lymphoid cell lines (mean proliferation 76.3±8.2%: p>0.05), consistent with the results obtained with the primary leukemia samples. To evaluate the impact of STAT3 and arginase on the immunosuppressive function of myeloid leukemia, the five cell lines were primed overnight with either arginase inhibitor (N(ω)-Hydroxy-nor-L-arginine; EMD Biosciences, Inc., California, USA) or two STAT3 inhibitors (STAT3 Inhibitor VI or Cucurbitacin I; EMD Millipore, Massachusetts, USA). Then, CD4+ T cells from healthy donors (n=3) were cultured with either (1) leukemia without any inhibitor (2) leukemia in the presence of inhibitor (3) leukemia primed with inhibitor. Priming leukemia with arginase inhibitor and STAT3 inhibitors almost completely abrogated their suppressive effect of T cell proliferation (p<0.001). We conclude that myeloid leukemia, like MDSC, directly immunosuppresses T cells, through STAT-3 and arginase. This finding may underlie the immune-editing of T cells by myeloid leukemia. Our results suggest that STAT3 inhibitors could be used to augment leukemia-targeted immunotherapy. Further investigation of T cell biology within the leukemia microenvironment is needed to further define immune editing mechanisms in myeloid leukemia. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3002-3002 ◽  
Author(s):  
Lorenz Jahn ◽  
Renate S. Hagedoorn ◽  
Pleun Hombrink ◽  
Michel G.D. Kester ◽  
Dirk M. van der Steen ◽  
...  

Abstract Therapeutic reactivity of CD20-specific monoclonal antibodies (mAb) or CD19-specific chimeric antigen receptor (CAR)-transduced T cells is exerted by targeting extracellular antigens. In contrast to mAbs and CARs, T cell receptors (TCRs) recognize antigen-derived peptides that are bound to human leukocyte antigen (HLA) molecules on the cell surface. Since HLA molecules constantly sample the entire endogenous proteome of a cell, extracellular and intracellular antigens are presented and can thus be recognized by a TCR. Here, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for immunotherapy. Bob1 is highly expressed in CD19+ B cells, acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and multiple myeloma (MM) and is absent in the non-B lineages including CD34+ hematopoietic progenitor cells (HPCs), T cells, fibroblasts, keratinocytes and gastrointestinal tract. Bob1 is localized intracellularly but HLA-presented Bob1-derived peptides are accessible on the cell surface to TCRs and can thus be recognized by T cells. From the HLA-presented ligandome (Mol Cell Proteomics, 2013;12:1829) we identified naturally processed Bob1-derived peptides displayed in HLA-A*0201 (HLA-A2) and in HLA-B*0702 (HLA-B7). Since auto-reactivity towards self-antigens such as Bob1 is prevented by depleting high-avidity T cells recognizing self-antigens in self-HLA, we exploited the immunogenicity of these peptides presented in allogeneic HLA. From a HLA-A2/B7-negative healthy individual we isolated T cell clone 4G11 demonstrating high sensitivity and specificity for Bob1-derived peptide Bob144 presented in HLA-B7. Bob1-dependent recognition was demonstrated by transduction of Bob1 into cell lines that otherwise lack Bob1 expression. No harmful toxicities of clone 4G11 were observed against a wide panel of Bob1-negative stimulator cells including HLA-B7-positive CD34+ HPCs, T cells, monocytes, immature and mature dendritic cells, and fibroblasts even under simulated inflamed conditions. Furthermore, stringent HLA-B7-restricted recognition was observed for clone 4G11 when tested against a stimulator panel expressing a wide range of common and rare HLA class I and II molecules. Clone 4G11 demonstrated clinical applicability by efficiently recognizing HLA-B7+ primary ALL, CLL and MCL. Furthermore, reproducible strong recognition of purified primary HLA-B7+ MM could be demonstrated. Therefore, the TCR of clone 4G11 may be used for immunotherapy by administering TCR-transduced T cells to patients suffering from B cell malignancies including multiple myeloma. Retroviral gene transfer of TCR 4G11 led to efficient cell surface expression demonstrated by binding of TCR-transduced CD8+ T cells to pMHC-tetramer composed of peptide Bob144 bound to HLA-B7. TCR-modified CD8+ T cells strongly recognized Bob1-expressing HLA-B7+ multiple myeloma cell lines U266 and UM9, and ALL cell lines. TCR-modified T cells efficiently lysed HLA-B7+ primary ALL, CLL and MCL at very low effector-to-target ratios. In addition, highly purified primary multiple myeloma samples were also readily lysed. Furthermore, TCR-transduced T cells strongly proliferated in an antigen-specific manner when stimulated with primary malignant cell samples including ALL, CLL, and MCL or MM cell lines. As expected, TCR-transduced T cells also lysed autologous primary and CD40L-stimulated B cells since these targets cells also express Bob1. In contrast, no lysis of Bob1-negative autologous primary and activated T cells, or monocytes was observed when co-cultured with TCR-transduced T cells. In summary, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for TCR-based immunotherapies of B cell malignancies. Bob1-specific T cell clone 4G11 efficiently recognized primary B cell leukemia and multiple myeloma. Gene transfer of TCR of clone 4G11 installed Bob1-reactivity and specificity onto recipient T cells shown here by cytolytic capacity and proliferation upon antigen encounter. TCR gene transfer approaches using this Bob1-specific TCR can bring novel treatment modalities and possibly curative therapy to patients with B cell malignancies including multiple myeloma. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2048-2048
Author(s):  
Wesley Huisman ◽  
Didier A.T. Leboux ◽  
Lieve E. van der Maarel ◽  
Lois Hageman ◽  
Derk Amsen ◽  
...  

Abstract Reactivations of cytomegalovirus (CMV), Epstein Bar virus (EBV) and adenovirus (AdV) are frequently seen in immune compromised patients after allogeneic stem cell transplantation (alloSCT), and are associated with high morbidity and mortality. T cell immunity is essential for anti-viral protection, but a fully competent T cell repertoire generally does not develop until 3-6 months after transplantation. Especially patients transplanted with a virus non- experienced donor are at risk of developing severe complications. Adoptive transfer of partially HLA-matched virus specific T cells from healthy third party donors is a potential strategy to temporarily provide anti-viral immunity to these patients. However, these partially HLA-matched T cells harbor a risk of mediating allo-HLA cross-reactivity. Here, we investigated whether virus specificity and HLA restriction of the virus specific T cells influence the risk of allo-HLA cross-reactivity, and thus the development of GVHD. To determine the occurrence and diversity of allo-HLA cross-reactivity, virus specific CD8 T cells from homozygous HLA-A*01:01/B*08:01 and HLA-A*02:01/B*07:02 donors were isolated by cell sorting using tetramers for various peptides from CMV, EBV and AdV. Allo-HLA cross-reactivity was tested using an allogeneic EBV-LCL panel covering 116 different HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA alleles of interest. A significant proportion of the virus specific T cell populations (n=174; 20 specificities) isolated from 27 healthy donors exerted allo-HLA cross-reactivity, as measured by recognition of 1 or more HLA mismatched EBV-LCLs from the panel. Similar frequencies were found for the various viral specificities showing 30% of the CMV, 46% of the EBV and 36% of the AdV-specific T cell populations to be allo-HLA cross-reactive. However, for some specificities (e.g. HLA-A*0201-restricted EBV-LMP2-FLY) allo-HLA cross-reactivity was infrequent (n=1/11), whereas for other specificities (e.g. HLA-B*08:01-restricted EBV-BZLF1-RAK) the majority of the T cell populations (n=9/13) was allo-HLA reactive. Surprisingly, a much larger fraction of HLA-B*08:01 restricted virus specific T cell populations showed allo-HLA cross-reactivity (72%, 36 out of 50 T cell lines), compared to the other HLA restricted virus specific T cell populations (29% of HLA-A*01:01, 30% of HLA-A*02:01 and 26% of HLA-B*07:02 restricted virus specific T cell lines). HLA-B*08:01 restricted virus specific T cells also exhibited the broadest allo-HLA reactivity, reacting to a median of 5 allo EBV-LCLs (range 1-17). In contrast, HLA-A*01:01, HLA-A*02:01 and HLA-B*07:02 restricted virus specific T cells reacted to a median of 1, 2 and 3 (ranges 1-7) allo EBV-LCLs, respectively. Dissection of the diversity/specificity of the allo-HLA reactivity using the panel of 40 different single HLA transduced K562 cells further illustrated the extensive allo-HLA cross-reactivity for HLA-B*08:01 restricted T cells isolated from homozygous HLA-A*01/B*08 donors compared to virus specific T cells restricted by other HLA alleles. These data show that allo-HLA cross-reactivity by virus specific T cells is highly influenced by the HLA restriction and not by the viral specificity of the T cell populations. Of the HLA-A*01, A*02, B*07 and B*08-restricted virus specific T cell populations isolated from homozygous donors, HLA-B*08:01 restricted virus specific T cells showed the highest frequency and diversity of allo-HLA cross-reactivity. Our results indicate that selection of virus specific T cells with specific HLA restrictions may decrease the risk of developing GVHD after infusion of third-party virus specific T cells to patients with uncontrolled viral reactivation after alloSCT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2931-2931
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Inge Jedema ◽  
Roelof Willemze ◽  
Henk-Jan Guchelaar ◽  
...  

Abstract Reactivation of CMV remains a major cause of morbidity and mortality in immunocompromised recipients of allogeneic stem cell transplantation. Antiviral pharmacotherapy may not be sufficient due to significant toxicity and moderate efficacy. It has been shown that adoptive transfer of donor-derived CMV-specific T cells may be an effective strategy to control established CMV infection. For a persistent function in vivo the presence of both virus-specific CD8+ and CD4+ T cells is essential. Therefore, we developed an optimized protocol for the generation of CMV pp65-specific CD8+ and CD4+ T cell lines which is fully compliable with Good Manufacturing Practice (GMP) conditions. Enrichment for CMV-specific T cells followed by only a short culture period is likely to retain maximal in vivo potential. PBMCs from 7 CMV seropositive donors were stimulated with recombinant pp65 protein (7–70 μg/ml) and/or HLA-A*0201/HLA-B*0702 restricted immunodominant pp65 peptides (NLV/TPR). Peptides used were clinical grade, and recombinant protein was gamma-irradiated (50 kGy, −80 C°) to eliminate possible microbiological contamination. High dose gamma-irradiation of pp65 protein resulted in partial degradation, but antigenic presentation was maintained. IFNγ producing cells were enriched using the IFNγ secretion assay (Miltenyi Biotec) at day 1 after stimulation, and cultured with autologous feeders (10x) and IL-2 (10 or 50 IU IL-2/ml) with or without CD3/28 expansion beads. Addition of high concentrations of protein during initial stimulation had a negative effect on enrichment probably due to non-specific stimulation of cells. Addition of immunodominant pp65 peptides promoted isolation efficiency and proliferation of epitope-specific CD8+ T cells in some donors. Cell lines were analyzed at different time points (day 4–15) using peptide-MHC tetramer and phenotypic markers. In addition, pp65-specificity was evaluated by intracellular IFNγ staining after restimulation with a pp65 protein-spanning pool of 15-mer peptides. CMV-specific lysis was tested in a 51-Cr release assay on pp65-transduced target cells. Enrichment of IFNγ producing cells after pp65 protein stimulation resulted in pp65-specific cell lines consisting of both CD8+ and CD4+ T cells. The T cell subset distribution directly after enrichment did not change during culture and was reproducible for each donor. Moreover, the composition of T cell lines reflected the pp65-specific response in donor PBMC starting material. The CD8+ compartment contained the known immunodominant tetramer staining cells (range 5–100%). The majority of both CD8+ and CD4+ T cells produced IFNγ upon restimulation with the pp65 peptide-pool, and showed CMV-specific lysis of target cells. The phenotype of pp65-specific T cells was predominant CD28+/CD45RO+ and CD45RA−/CCR7−/CD62L−, although CCR7 and CD62L were transiently expressed at day 4 and 7 after stimulation. Cryopreservation did not affect the composition or functionality of T cell lines. In conclusion, this procedure yields GMP-grade T cell lines comprising both CD8+ and CD4+ CMV-specific T cells. Processing and presentation of CMV protein by donor antigen-presenting cells enables selection of the full pp65-specific donor repertoire, without restrictions related to HLA or known epitopes. The choice for a moderate or more vigorous expansion after enrichment remains arbitrary and needs to be evaluated in clinical trials.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3713-3713
Author(s):  
Seung-Tae Lee ◽  
Shujuan Liu ◽  
Pariya Sukhumalchandra ◽  
Jeffrey Molldrem ◽  
Patrick Hwu ◽  
...  

Abstract Adoptive T-cell therapy using donor lymphocyte infusions is a promising approach for treating hematological malignancies. But, efficacy is limited by the induction of graft-versus-host disease. Transfer of tumor-specific T-cell clones could enhance the graft-versus-tumor effect and eliminate graft-versus-host disease. However, isolating antigen-specific T-cell clones by the traditional limiting dilution approach is a time-consuming and laborious process. Here, we describe a novel strategy for rapidly cloning tumor-specific T cells. Lymphoma-specific T-cell lines were generated from two follicular lymphoma patients by repeated in vitro stimulation of lymphocytes isolated from tumor or blood with autologous soluble CD40 ligand-activated tumor cells. After four in vitro stimulations at 10-day intervals in the presence of IL-2 and IL-15, T-cell lines were found to be predominantly CD4+ T cells and produced significant amounts of TNF-a, GM-CSF, and IFN-γ in response to autologous tumor cells. The tumor reactivity was MHC class II restricted suggesting that it was mediated by CD4+ T cells. Staining with a TCR Vb antibody panel, a set of monoclonal antibodies against 24 human TCR Vb families, revealed that certain Vb families were overrepresented in each CD4+ T-cell line. In patient 1, 51% of CD4+ T cells were Vb1 positive, and in patient 2, 27% of CD4+ T cells were Vb8 positive. To clone lymphoma-specific T cells, CD4+ T-cell lines were labeled with CFSE and stimulated with autologous tumor cells. After 9 days of in vitro expansion in the presence of IL-2 and IL-15, CD4+ T-cell lines were stained with an anti-human CD4-APC monoclonal antibody and an anti-human TCR Vb-PE monoclonal antibody for each CD4+ T-cell line. Proliferating Vb1 cells from patient 1 and Vb8 cells from patient 2 were identified by their reduction in CFSE staining, and CD4+TCRV b +CFSEdim cells were sorted by flow cytometer. Monoclonality of the sorted cells was confirmed by PCR using a panel of optimized primers specific for 24 TCR Vb families, by TCR Vb spectratype analysis, and finally, by sequencing the TCR Vb gene used by each T-cell clone. Sorted tumor-specific T-cell clones could be expanded to large numbers using a 14-day rapid expansion protocol with allofeeder PBMCs, and confirmed to retain specificity against autologous tumor cells in a cytokine induction assay. This approach was also successfully used to isolate melanoma-specific CD8+ T-cell clones from two patients. We conclude that this approach is highly reproducible, rapid, and efficient for generating antigen-specific T-cell clones for adoptive T-cell therapy against human malignancies in the autologous or allogeneic setting.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2225-2225
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Louise A. Veltrop-Duits ◽  
Marco W. Schilham ◽  
Roelof Willemze ◽  
...  

Abstract Human Adenovirus (HAdV) can cause serious morbidity in immunocompromised patients, in particular in pediatric recipients of allogeneic stem cell transplantation (alloSCT). Progression to disseminated adenoviral disease is associated with a high mortality, despite treatment with antiviral agents such as ribavirin and cidofovir. It has been demonstrated that reconstitution of HAdV-specific T cells is essential to control adenoviral infection after alloSCT. Adoptive transfer of donor-derived HAdV-specific T cells may therefore be a strategy to provide long-term protection from HAdV. In healthy individuals, T cells directed against HAdV are only detected at low frequencies and are predominantly directed to the HAdV hexon protein. Only recently, a number of immunodominant CD8+ and CD4+ epitopes of HAdV hexon have been defined. Since these epitopes are largely conserved between the different HAdV subgroups, T cells specific for these immunodominant epitopes may provide protection from a wide range of adenoviral serotypes. The aim of this study was to develop a method for the generation of combined CD8+ and CD4+ T cell lines with high and well defined specificity for the HAdV hexon protein. We first analyzed the frequencies of HAdV hexon-specific CD8+ and CD4+ T cells in healthy individuals using sensitive measurement by peptide-MHC tetramers, and intracellular cytokine staining combined with CD154 or peptide-MHC tetramer staining, after stimulation with defined MHC class I peptides, 30-mer peptides containing class II epitopes, or a HAdV hexon protein-spanning pool of overlapping 15-mer peptides (Miltenyi Biotec, Germany). We demonstrated that the frequencies of HAdV hexon-specific T cells were very low in most healthy individuals tested. HAdV hexon-specific CD8+ T cells were detectable in only 3/15 individuals (range 0.16–0.43% of CD8+ T cells), and hexon-specific CD4+ T cells were detected in all individuals with a median of 0.07% (range 0.004–0.38% of CD4+ T cells). The highest frequencies were found after stimulation with the hexon protein-spanning 15-mer peptide pool, indicating activation of both known and unknown epitopes. Kinetic analysis showed highest levels of IFNg production after 4–8 hours of stimulation for HAdV-specific CD8+ T cells, and after 4–48 hours of stimulation for HAdV-specific CD4+ T cells. The phenotype of these HAdV hexon-specific T cells corresponded to an early memory phenotype, CD27+, CD28+, CD62L+, CD45RO+. Despite these low or undetectable frequencies of HAdV-specific T cells, IFNg-based enrichment 4 hours after activation with the HAdV hexon protein-spanning peptide pool resulted in efficient isolation of CD8+ and CD4+ T cells recognizing both known and unknown HAdV hexon epitopes. Following a short culture period of 7 days, the T cell lines consisted of 49–80% CD8+ T cells and 13–15% CD4+ T cells. Restimulation by autologous EBV-LCL loaded with HAdV hexon peptide pool followed by intracellular IFNg staining showed that the frequency of HAdV-specific T cells was increased to 65–95% of CD8+ T cells, and 38–72% of CD4+ T cells. The frequency of HAdV-tetramer-positive cells was increased to 32–76% of CD8+ T cells, indicating that part of HAdV-specific CD8+ T cells recognized known epitopes. After 14 days, the frequency of HAdV-specific T cells had further increased to 89–94% of CD8+ T cells and 61–91% of CD4+ T cells. Starting with only 25x106 donor peripheral blood mononuclear cells, this strategy yielded T cell lines containing 1.3–2.7x106 HAdV-specific combined CD8+ and CD4+ T cells in 14 days. We conclude that we developed a GMP-grade method for the fast generation of highly HAdV-specific CD8+ and CD4+ T cell lines from all healthy donors tested, irrespective of HLA-restriction, for the treatment HAdV infection after alloSCT, with very limited risk of graft-versus-host disease.


Sign in / Sign up

Export Citation Format

Share Document