A Pre-Clinical Model Of Hematopoietic Stem Cell Based Immunotherapy For Cancer Utilizing The NY-ESO-1 T-Cell Receptor and sr39TK PET Reporter / Suicide Gene

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2020-2020
Author(s):  
Eric H. Gschweng ◽  
Melissa N. McCracken ◽  
Thinle Chodon ◽  
Richard C Koya ◽  
Michael L Kaufman ◽  
...  

Abstract Immunotherapy using peripheral blood T-cells engineered with T-cell receptor (TCR) or chimeric antigen receptor genes is a promising approach for the treatment of malignant diseases, and has demonstrated clinical efficacy capable of curing late stage cancer patients. Unfortunately the complete response rate remains low, and the majority of patients respond transiently and then relapse. The massive ex vivo expansion of autologous cells required to generate a therapeutic bolus may exhaust the replicative capacity of the infused cell product. An approach using cells with greater regenerative capacity is an attractive solution to this problem. We hypothesize that gene transfer of an NY-ESO-1 cancer/testes antigen specific TCR into human hematopoietic stem cells (HSCs) is capable of generating a continuous supply of effector T-cells capable of killing cancer in vivo. To evaluate this approach, we utilize a humanized mouse model where peripheral blood stem cells (PBSC) enriched for the stem and progenitor marker CD34+ are transduced with a lentivirus encoding codon optimized NY-ESO-1 TCR and HSV-sr39TK transgenes, then adoptively transferred to preconditioned (100 cGy TBI) NSG-HLA-A2.1 neonatal mice. Development of NY-ESO-1 TCR bearing effector T-cells was detected in the peripheral blood of mice as early as 2 months post-transplant, and persisted for at least 5 months post-transplant. Ex vivo assay of T-cells developed from engineered HSCs showed robust release of interferon-γ when cocultured with NY-ESO-1 antigen and HLA-A2.1 matched tumor cells but not when HLA was mismatched, indicating HLA restricted antigen recognition. Furthermore cytotoxicity assays showed that engineered T-cells were capable of specifically killing tumor cells when antigen and HLA matched. The inclusion of the PET imaging/suicide gene HSV-sr39TK allows both the non-invasive tracking of progeny derived from gene modified HSCs, and their ablation in the event of on-target / off-cancer reactivity or hematopoietic dysplasia due to insertional mutagenesis of gene modified cells. [18F]-FHBG PET imaging of TCR/TK engineered humanized mice allowed the detection of gene modified cells in the marrow compartments of mice, namely the long bones of the legs and arms. Importantly, strong thymus signal was also observed indicating robust thymic population/thymopoiesis of gene modified cells. No specific signal was detected in mock transduced HSC transplanted humanized mice, with identical biodistribution of signal as observed in non-transplanted NSG-A2.1 mice. To examine the suicide gene function of the HSV-sr39TK cassette, we treated engineered humanized mice with vehicle or ganciclovir, the prodrug for suicide gene function of HSV-sr39TK. Ganciclovir treatment resulted in ablation of hematopoietic compartment specific PET signal, while vehicle did not. Mice were subsequently euthanized, and the presence of gene modified cells in organ compartments was examined by digital qPCR for the lentiviral psi element. We detected an order of magnitude decrease in the amount of gene modified cells in ganciclovir treated animals compared with controls. Our studies demonstrate the feasibility of using TCR engineered HSCs for immunotherapy, as functional, HLA-restricted NY-ESO-1 T-cells developed in vivo from transplanted HSCs. In vivo imaging of gene modified cells supports visual resolution of gene modified HSC progeny at a level not previously described, and validation of the suicide gene function of HSV-sr39TK is of particular importance to gene therapy studies. Further work is focused on examining the immunological memory phenotype of TCR modified cells that develop from TCR modified HSCs, the effect of in vivo activation of these cells by dendritic cell pulse, and the ability of NY-ESO-1 humanized mice to mount a persistent anti-tumor response. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1659-1659 ◽  
Author(s):  
Sarah M. Larson ◽  
Andy Tu ◽  
Shanta Senadheera ◽  
Michelle Ho ◽  
Donald B. Kohn ◽  
...  

Abstract Background Although significant improvements have been made, patients with relapsed or refractory B-cell malignancies continue to have unfavorable clinical outcomes. We hypothesize that transduction of hematopoietic stem cells (HSCs) with an anti-CD19 Chimeric Antigen Receptor (CAR) will produce a multi-lineage, persistent immunotherapy that can be controlled by the HSVsr39TK suicide gene. Methods First generation anti-CD19 CAR lentiviral constructs containing the HSVsr39TK suicide gene were developed to compare vectors containing the human elongation factor alpha short (EFS) or myeloproliferative sarcoma virus U3 (MNDU3) promoters for transduction efficiency, antigen-specific cytotoxicity and ganciclovir (GCV)-induced cell death in primary human T-cells. The CD28 costimulatory domain was added to the selected construct, and high titer lentiviral vectors were generated to evaluate transduction of human umbilical cord blood (UCB) HSCs for in vitro and in vivo assays. In vitro assays were performed after culture under myeloid differentiation conditions, followed by assessment of phenotype, transduction efficiency, cytotoxic function and GCV-induced cell death. In vivo assays were conducted through transplantation of gene-modified human HSCs into irradiated NSG pups, compared to humanized NSG injected with non-modified human HSCs. Once engraftment was identified, mice from each cohort were further separated into GCV treated and untreated groups. Following GCV administration, mice were harvested to evaluate the presence of human and CAR-modified cells in the bone marrow, spleen and peripheral blood. Results In human primary T cells, the MNDU3 promoter resulted in higher percentage of CAR expressing cells and mean fluorescence intensity compared to the EFS promoter. Cytotoxicity by the transduced T cells against the huCD19+Raji cell line showed similar target cell specific lysis among the constructs. Treatment with GCV effectively decreased the in vitro survival of the cells containing the HSVsr39TK gene compared to the non-transduced and control vector. The construct with MNDU3 promoter was then used with a CD28-containing second-generation anti-CD19 CAR (CCL-MND-αCD19/z/28-sr39). Once transduction efficiency and CAR function were validated in primary human T cells, this vector was used to transduce human UCB CD34+ cells. Following transduction, these cells were evaluated in vitro and in vivo. The cells used for the in vitro studies were cultured under myeloid differentiation conditions. The average number of CAR expressing cells was 45% at the clinically relevant vector copy number of 0.5-1 copies/cell. The myeloid cells transduced with the CCL-MND-αCD19/z/28-sr39 vector demonstrated CD19-specific killing and were eliminated by GCV. In vivo studies demonstrated successful engraftment of transduced HSC with CAR-expressing cells in the different hematopoietic lineages (T, NK, myeloid) detected among human cells in the bone marrow (1.2-15.4%, mean 7.6%), spleen (0.3-15.4%, mean 5.6%), and peripheral blood (0.5-30%, mean 9.2%). Mice engrafted with anti-CD19 CAR-modified HSCs exhibited decreased huCD19+ populations, compared to the mice engrafted with non-modified HSCs. Treatment with GCV resulted in significant decrease in CAR-expressing cells only in the mice transplanted with CD34+ cells transduced with the HSVsr39TK-containing vector. Discussion Here we demonstrate that HSCs can be effectively transduced with an anti-CD19 CAR linked to the HSVsr39TK suicide gene. The CAR was detected in human cells in the bone marrow, spleen and peripheral blood and resulted in decreased B-lineage populations as an index of antigen-specific cytotoxicity; the HSVsr39TK gene conferred sensitivity to ganciclovir which eliminated transduced cells. These results provide pre-clinical support for the use of a CD19 targeted CAR in HSCs for the treatment of B-cell malignancies. Disclosures: Larson: Millenium: Speakers Bureau.


Blood ◽  
2001 ◽  
Vol 98 (12) ◽  
pp. 3447-3455 ◽  
Author(s):  
George E. Georges ◽  
Rainer Storb ◽  
Benedetto Bruno ◽  
Scott J. Brodie ◽  
Jennifer D. Thompson ◽  
...  

Abstract Genetically modified donor T cells with an inducible “suicide” gene have the potential to improve the safety and availability of allogeneic hematopoietic stem cell transplantation by enhancing engraftment and permitting control of graft-versus-host disease (GVHD). However, several clinical studies of gene-modified T cells have shown limited to no in vivo function of the ex vivo expanded T cells. Using the well-established dog model of allogeneic marrow transplantation, the question was asked if retrovirally transduced, donor derived, ex vivo expanded cytotoxic T lymphocytes (CTLs) that are recipient specific could enhance engraftment of dog leukocyte antigen (DLA)–haploidentical marrow following a single dose of 9.2 Gy total body irradiation and no postgrafting immunosuppression. In this setting, only 4 of 11 control recipients of DLA-haploidentical marrow without added CTLs engrafted. CTLs did not enhance engraftment of CD34+ selected peripheral blood stem cells. However, recipient-specific CTLs enhanced engraftment of DLA-haploidentical marrow in 9 of 11 evaluable recipients (P = .049). All dogs that engrafted developed multiorgan GVHD. To facilitate in vivo tracking, 8 dogs received CTLs transduced with a retroviral vector encoding green fluorescent protein (GFP) and neomycin phosphotransferase (neo). Recipients that engrafted had sharp increases in the numbers of circulating GFP+ CTLs on days +5 to +6 after transplantation. GFP+ CTLs isolated from blood were capable of recipient-specific lysis. At necropsy, up to 7.1% of CD3+ cells in tissues were GFP+ and polymerase chain reaction in situ hybridization for neoshowed infiltration of transduced CTLs in GVHD-affected organs. These results show that ex vivo expanded, transduced T cells maintained in vivo function and enhanced marrow engraftment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


1996 ◽  
Vol 184 (6) ◽  
pp. 2261-2270 ◽  
Author(s):  
Kristen M. Hege ◽  
Keegan S. Cooke ◽  
Mitchell H. Finer ◽  
Krisztina M. Zsebo ◽  
Margo R. Roberts

Gene modification of hematopoietic stem cells (HSC) with antigen-specific, chimeric, or “universal” immune receptors (URs) is a novel but untested form of targeted immunotherapy. A human immunodeficiency virus (HIV) envelope–specific UR consisting of the extracellular domain of human CD4 linked to the ζ chain of the T cell receptor (CD4ζ) was introduced ex vivo into murine HSC by retroviral transduction. After transplantation into immunodeficient SCID mice, sustained high level expression of CD4ζ was observed in circulating myeloid and natural killer cells. CD4ζ-transplanted mice were protected from challenge with a lethal dose of a disseminated human leukemia expressing HIV envelope. These results demonstrate the ability of chimeric receptors bearing ζ-signaling domains to activate non–T cell effector populations in vivo and thereby mediate systemic immunity.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1909 ◽  
Author(s):  
D. Branch Moody ◽  
Sara Suliman

The human cluster of differentiation (CD)1 system for antigen display is comprised of four types of antigen-presenting molecules, each with a distinct functional niche: CD1a, CD1b, CD1c, and CD1d. Whereas CD1 proteins were thought solely to influence T-cell responses through display of amphipathic lipids, recent studies emphasize the role of direct contacts between the T-cell receptor and CD1 itself. Moving from molecules to diseases, new research approaches emphasize human CD1-transgenic mouse models and the study of human polyclonal T cells in vivo or ex vivo in disease states. Whereas the high genetic diversity of major histocompatibility complex (MHC)-encoded antigen-presenting molecules provides a major hurdle for designing antigens that activate T cells in all humans, the simple population genetics of the CD1 system offers the prospect of discovering or designing broadly acting immunomodulatory agents.


2001 ◽  
Vol 193 (11) ◽  
pp. 1303-1310 ◽  
Author(s):  
Detlef Dieckmann ◽  
Heidi Plottner ◽  
Susanne Berchtold ◽  
Thomas Berger ◽  
Gerold Schuler

It has been known for years that rodents harbor a unique population of CD4+CD25+ “professional” regulatory/suppressor T cells that is crucial for the prevention of spontaneous autoimmune diseases. Here we demonstrate that CD4+CD25+CD45RO+ T cells (mean 6% of CD4+ T cells) are present in the blood of adult healthy volunteers. In contrast to previous reports, these CD4+CD25+ T cells do not constitute conventional memory cells but rather regulatory cells exhibiting properties identical to their rodent counterparts. Cytotoxic T lymphocyte–associated antigen (CTLA)-4 (CD152), for example, which is essential for the in vivo suppressive activity of CD4+CD25+ T cells, was constitutively expressed, and remained strongly upregulated after stimulation. The cells were nonproliferative to stimulation via their T cell receptor for antigen, but the anergic state was partially reversed by interleukin (IL)-2 and IL-15. Upon stimulation with allogeneic (but not syngeneic) mature dendritic cells or platebound anti-CD3 plus anti-CD28 the CD4+CD25+ T cells released IL-10, and in coculture experiments suppressed the activation and proliferation of CD4+ and CD8+ T cells. Suppression proved IL-10 independent, yet contact dependent as in the mouse. The identification of regulatory CD4+CD25+ T cells has important implications for the study of tolerance in man, notably in the context of autoimmunity, transplantation, and cancer.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Giovanna Cutrona ◽  
Nicolò Leanza ◽  
Massimo Ulivi ◽  
Giovanni Melioli ◽  
Vito L. Burgio ◽  
...  

Abstract This study shows that human postthymic T cells express CD10 when undergoing apoptosis, irrespective of the signal responsible for initiating the apoptotic process. Cells from continuous T-cell lines did not normally express CD10, but became CD10+ when induced into apoptosis by human immunodeficiency virus (HIV) infection and exposure to CD95 monoclonal antibody, etoposide, or staurosporin. Inhibitors of caspases blocked apoptosis and CD10 expression. Both CD4+ and CD8+ T cells purified from normal peripheral blood expressed CD10 on apoptotic induction. CD10 was newly synthesized by the apoptosing cells because its expression was inhibited by exposure to cycloheximide and CD10 mRNA became detectable by reverse transcription-polymerase chain reaction in T cells cultured under conditions favoring apoptosis. To show CD10 on T cells apoptosing in vivo, lymph node and peripheral blood T cells from HIV+ subjects were used. These suspensions were composed of a substantial, although variable, proportion of apoptosing T cells that consistently expressed CD10. In contrast, CD10+ as well as spontaneously apoptosing T cells were virtually absent in peripheral blood from normal individuals. Collectively, these observations indicate that CD10 may represent a reliable marker for identifying and isolating apoptosing T cells in vitro and ex vivo and possibly suggest novel functions for surface CD10 in the apoptotic process of lymphoid cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3106-3106
Author(s):  
Bruno Nervi ◽  
Michael P. Rettig ◽  
Julie K. Ritchey ◽  
Gerhard Bauer ◽  
Jon Walker ◽  
...  

Abstract GvHD remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusion. The human GvHD pathophysiology includes recipient tissue destruction and proinflammatory cytokine production associated with the conditioning regimen; donor T cells become allo-activated, proliferate, and mediate tissue injury in various organs, including the liver, skin, and gut. Modern therapeutic strategies to control GvHD while maintaining the beneficial graft-versus-leukemia effects require ex vivo T cell stimulation and expansion. Multiple studies have demonstrated that these ex vivo expanded T cells exhibit decreased survival and function in vivo, including reduced alloreactivity and GvHD potential. Unfortunately no in vivo models exist to consistently examine the impact of ex vivo manipulation of human T cells (HuT) on T cell function. Naive HuT were compared to HuT activated using CD3/28 beads (XcyteTMDynabeads) with 50 U/ml IL-2 for 4 days (Act). We initially evaluated the HuT engraftment and GvHD potential of naive and Act in RAG2γ null mice (n=22) conditioned with clodronate liposomes on day −1 and 350cGy on day 0, as previously described by others. We injected 107 and 1.5x107 naive or Act HuT intravenously (iv). All mice exhibited low HuT engraftment and no lethal GvHD. NOD SCIDβ 2M null mice (β 2M) were next conditioned with 250cGy on day −1 (n=34), or 300cGy on day 0 (n=21). 107 naive vs Act HuT were injected retroorbitaly (ro). Lower HuT doses or iv injection resulted in no expansion or GvHD. Engraftment of HuT in peripheral blood of recipient mice was evaluated weekly by FACS and euthanasia was performed if mice lost > 20% body weight. 60% of the mice conditioned with 250cGy that received naive HuT developed lethal GvHD, in comparison to 75% of mice that received 300cGy and nave HuT, and 100% of mice that received 300cGy and Act HuT. Table 1 250cGy 300cGy Naive (n=34) Naive (n=8) Activated (n=13) *p<0.02 PB engraftment (%HuT) 20%±15 33%±21 59%±19 Lethal GvHD 60% 75% 100% All mice receiving 300cGy had well preserved CD4/CD8 ratios (1–1.5). Tissue infiltration was greatest in mice that had received 300cGy and Act HuT (spleen, liver, lung, kidney: 50–70%). Of interest, serum levels of hu IFNγ dramatically increased over time in all mice who went on to develop lethal GvHD (day 3=270 ug/ml and day 15=36,000 ug/ml) compared to mice that did not develop lethal GvHD (day 10=40 ug/ml and day 17=1,020 ug/ml)(p<0.05). Interestingly, the up-regulation of the activation markers CD25 and CD30 in HuT, and IFNγ production predicted lethal GvHD in β 2M null mice. In summary, we developed a xenogeneic model of lethal GvHD where naive or ex vivo Act HuT injected ro in sublethaly irradiated β 2M not only engraft, expand in vivo, but also infiltrate and damage different mouse target organs. HuT are allo-activated against mouse antigens and damage the target tissues, sharing the major characteristics of human GvHD and causing the death of mice. This model will allow us to study the effects of specific ex vivo T cell manipulation including transduction, selection, expansion, and the depletion or addition of various T cells and other cellular subsets on the outcome of GvHD, to determine improved therapeutic interventions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3222-3222
Author(s):  
Jenny Zilberberg ◽  
Kira Goldgirsh ◽  
Robert Korngold ◽  
Thea M. Friedman

Abstract CD4+CD25+ regulatory T cells (Treg) are essential for the maintenance of self-tolerance and have also been implicated in the control of alloreactive immune responses. Several studies using murine models of graft-vs.-host disease (GVHD) have shown that addition of equivalent numbers of Treg to the donor T cell inoculum at time of hematopoietic stem cell transplantation can significantly reduce the incidence of GVHD. In addition, in an MHC-matched, minor histocompatibility disparate model, the infusion of Treg ten days post-transplantation was shown to ameliorate the progression of GVHD while permitting a graft-versus-leukemia effect. However, because Treg constitute <5% of peripheral CD4+ T cells in humans, the use of freshly isolated Treg to treat and/or prevent GVHD, as well as other diseases in the clinical situation, is limited. Therefore, much effort is now under way to expand Treg in order to have sufficient numbers for therapeutic use. There is little available information regarding the repertoire complexity of ex vivo, polyclonally expanded regulatory T cells. We hypothesize that like their CD4+CD25− T cell counterparts, the diversity of the Treg T cell receptor (TCR) repertoire will also be complex. To this end, CD4+CD25− and CD4+CD25+ T cells from B10.BR mice were purified using fluorescence activated cell sorting; both populations were polyclonally expanded using CD3/CD28 paramagnetic microbeads in combination with high levels (100 IU/ml) of hrIL-2. After achieving a greater than 50 fold expansion, RNA from 1–1.5×107 cells was isolated for RT-PCR. The complexity of the T cell repertoire of expanded CD4+CD25− and CD4+CD25+ was determined using TCR Vb CDR3-size spectratype analysis. The PCR products were run on a sequencing gel and analyzed by the GeneMapper Software from Applied Biosystems. This comparison revealed that the number of resolvable Vb families is more heterogeneous in the CD25− populations. Whether this reflected a lack of complexity in the regulatory repertoire warrants further investigation. However, for the resolvable Vb families there were no significant differences in the complexity indexes between these two groups.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3266-3266
Author(s):  
Pablo Laje ◽  
William H. Peranteau ◽  
Masayuki Endo ◽  
Philip W. Zoltick ◽  
Alan W. Flake

Abstract The developing fetal immune system provides a unique opportunity to manipulate normal immunologic development for therapeutic prenatal and anticipated postnatal interventions. In previous studies we have shown that allogeneic in utero hematopoietic cell transplantation (IUHCT) results in donor specific tolerance that can subsequently facilitate non-myeloablative postnatal cellular or organ transplants. It follows that in utero injection of transduced hematopoietic stem cells (HSC) could potentially induce tolerance to a transgene encoded protein. We hypothesized that expression of a transduced antigenic protein by HSC and their progeny would alter thymic T cell development resulting in deletion of antigen specific T-cells. To test this hypothesis, we used the mammary tumor virus (MTV) superantigen system to evaluate the effect of IUHCT of transduced HSC on T cell development. In this system, expression of different MTV oncogenes by different I-E+ strains of mice results in deletion of T cells expressing the relevant Vβ T cell receptor. Specifically, mice which are Mtv7+ delete T cells expressing the Vβ6 T-cell receptor. In this study, CD150+CD48− enriched Balb/c (I-E+ Mtv7−) HSC were transduced with an HIV-based lentivirus expressing MTV7 under an MND promoter. 1.5E+05 transduced cells were injected intravascularly via the vitelline vein into E14 Balb/c fetuses. Non-injected age matched naive Balb/c mice served as the control group. The peripheral blood (PB) and thymuses of injected fetuses and control mice were harvested at day of life (DOL) 10, 20 and 60 and analyzed by flow cytometry for T lymphocyte Vβ6 expression. Additionally, the T cell composition of the thymus was assessed at DOL10 for CD4 and CD8 single positive (SP) and CD4/CD8 double positive (DP) cells. Thymic flow cytometric analysis at DOL10 revealed that greater than 98% of the T cells were CD4CD8 DP, a stage that has not yet undergone negative selection. No significant difference was noted in the percentage of thymic Vβ6+ DP T-cells at this time point or at DOL20 and DOL60. In contrast, there was a significant decrease in the percentage of Vβ6+ peripheral blood SP cells in those mice injected with MTV7 transduced HSC relative to control mice at DOL10, DOL20 and DOL60 (p<0.05) (Fig 1). The current study supports the ability of enriched transduced HSC to induce deletion of transgene specific T cells after IUHCT. In the future, this strategy may be useful to promote tolerance for pre or postnatal cellular or gene therapy. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document