scholarly journals TNFRSF14 aberrations in Follicular Lymphoma B Cells Result in Increased Alloresponses in Vitro and in Vivo

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2426-2426 ◽  
Author(s):  
Eleni Kotsiou ◽  
Jessica Okosun ◽  
Andrew James Clear ◽  
Sameena Iqbal ◽  
Jude Fitzgibbon ◽  
...  

Abstract Introduction Genetic aberrations of Tumor Necrosis Factor Receptor Superfamily 14 (TNFRSF14, also known as HVEM) have been shown to occur at high frequencies in patients (pts) with follicular lymphoma (FL). HVEM is a ligand for B and T lymphocyte attenuator (BTLA) which negatively regulates T cell responses and BTLA stimulation reduces acute graft-versus-host disease (aGvHD) in murine allogeneic hematopoietic cell transplantation (AHCT) models. As activated FL B cells are potent alloantigen presenting cells, we hypothesized that TNFRSF14 aberrations in FL B cells would reduce expression of HVEM and potentiate capacity of FL B cells to stimulate allogeneic T cell responses. We therefore sought to determine the functional effect of TNFRSF14 aberrations on FL B cell-stimulated donor T cell alloresponses in vitro. We also examined the impact of TNFRSF14 aberrations on the outcome of FL pts after HLA-matched reduced intensity conditioning (RIC) AHCT. Results FL B cells from lymph nodes were FACS-sorted (>90% purity and > 95% light chain restriction), activated and used as stimulators in mixed lymphocyte reactions with purified allogeneic responder CD3+ T cells. HVEM expression on FL B cells from pts with biallelic TNFRSF14 aberrations (Mut/Del cases) was undetectable whereas 40% of FL B cells from TNFRSF14 WT cases expressed HVEM (Fig 1 A). In contrast, FL B cells from Mut/Del and WT cases expressed similar levels of MHC class I/II, CD80, CD86 and CD58 before and after activation. Allostimulation with Mut/Del FL B cells resulted in significantly greater expression of activation markers on responder CD4+ T cells, increased secretion of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) measured by ELISA and increased frequencies of cytokine-secreting CD4+ and CD8+ T cells enumerated by intracellular cytokine staining. Responder T cell proliferation by thymidine incorporation was significantly greater after stimulation with Mut/Del FL B cells compared to WT FL B cells. CFSE labeling studies demonstrated that this effect resulted from increased proliferation of CD4+ and CD8+ responder T cells after both primary (Fig 1B) and secondary allostimulation. To determine if the increased alloresponses we observed using FL B cells from TNFRSF14 Mut/Del cases was due to reduced HVEM-BTLA signaling, we performed allogeneic co-cultures in the presence of antagonist or agonist BTLA antibodies (ab). Antagonist anti-BTLA ab increased proliferation of responder T cells after stimulation with WT FL B cells confirming that BTLA limits alloresponses in our in vitro model. Importantly, agonist BTLA ab reduced alloresponses stimulated by Mut/Del FL B cells. We next sought to determine if the increased alloresponses we detected in vitro in FL pts with TNFRSF14 aberrations resulted in an increase in clinical alloreactivity after AHCT. DNA from lymph nodes from FL pts undergoing T-cell replete RIC AHSCT was screened for TNFRSF14 mutations and deletions by Sanger sequencing and multiplex ligation-probe amplification respectively. Cumulative incidences (CI) of aGvHD and GvHD-related death were calculated with FL progression as a competing risk. TNFRSF14 aberrations were identified in 10/21 pts prior to RIC AHCT (4 Mut/Del, 1 Del/Del, 1 Mut/WT, 4 Del/WT). Most (18/21) pts had evidence of ongoing FL pre-transplant. Disease and donor characteristics were similar in pts with and without aberrations. There was no significant difference in CI of aGvHD in pts with or without TNFRSF14 aberrations. However there was a significantly higher CI of fatal aGvHD in patients with TNFRSF14 aberrations (45%) compared to those without aberrations (0%, p<0.01). Interestingly, relapse was less frequent in patients with TNFRSF14 aberrations consistent with increased graft-versus-tumor effects, although this did not reach statistical significance. Conclusion This study is the first to describe the impact of TNFRSF14 aberrations on the allostimulatory capacity of FL B cells. TNFRSF14 aberrations were associated with enhanced T-cell alloresponses in vitro and increased death from aGvHD. Importantly, our results suggest FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to prevent fatal aGvHD after AHCT. The increased antigen-presenting capacity of FL B cells with TNFRSF14 aberrations could also influence autologous anti-tumor responses and impact outcome after other treatment modalities. Figure 1 Figure 1. Disclosures Gribben: Celgene: Research Funding; Pharmacyclics: Honoraria; Roche: Honoraria.

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Tyler C. Moore ◽  
Lorena M. Gonzaga ◽  
Jennifer M. Mather ◽  
Ronald J. Messer ◽  
Kim J. Hasenkrug

ABSTRACTRegulatory T cells (Tregs) are immunosuppressive cells of the immune system that control autoimmune reactivity. Tregs also respond during immune reactions to infectious agents in order to limit immunopathological damage from potent effectors such as CD8+cytolytic T lymphocytes. We have used the Friend virus (FV) model of retroviral infection in mice to investigate how viral infections induce Tregs. During acute FV infection, there is significant activation and expansion of thymus-derived (natural) Tregs that suppress virus-specific CD8+T cell responses. Unlike conventional T cells, the responding Tregs are not virus specific, so the mechanisms that induce their expansion are of great interest. We now show that B cells provide essential signals for Treg expansion during FV infection. Treg responses are greatly diminished in B cell-deficient mice but can be restored by adoptive transfers of B cells at the time of infection. The feeble Treg responses in B cell-deficient mice are associated with enhanced virus-specific CD8+T cell responses and accelerated virus control during the first 2 weeks of infection.In vitroexperiments demonstrated that B cells promote Treg activation and proliferation through a glucocorticoid-induced receptor superfamily member 18 (GITR) ligand-dependent mechanism. Thus, B cells play paradoxically opposing roles during FV infection. They provide proliferative signals to immunsosuppressive Tregs, which slows early virus control, and they also produce virus-specific antibodies, which are essential for long-term virus control.IMPORTANCEWhen infectious agents invade a host, numerous immunological mechanisms are deployed to limit their replication, neutralize their spread, and destroy the host cells harboring the infection. Since immune responses also have a strong capacity to damage host cells and tissues, their magnitude, potency, and duration are under regulatory control. Regulatory T cells are an important component of this control, and the mechanisms that induce them to respond and exert immunosuppressive regulation are of great interest. In the current report, we show that B cells, the cells responsible for making pathogen-specific antibodies, are also involved in promoting the expansion of regulatory T cells during a retroviral infection.In vitrostudies demonstrated that they do so via stimulation of the Tregs through interactions between cell surface molecules: GITR interactions with its ligand (GITRL) on B cells and GITR on regulatory T cells. These findings point the way toward therapeutics to better treat infections and autoimmune diseases.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3753-3753
Author(s):  
Hugues de Lavallade ◽  
David Marin ◽  
Melanie Hart ◽  
Takuya Sekine ◽  
Ian Gabriel ◽  
...  

Abstract Abstract 3753 The tyrosine kinase inhibitors (TKIs) imatinib (IM), nilotinib (NIL) and dasatinib (DAS) are remarkably effective as single-agent therapy for chronic myeloid leukemia (CML) in chronic phase (CP). However little is known of their potential impact on the immune response. No human in vivo studies to assess how these molecular-targeted drugs affect immune function in patients are available and data from in vitro and animal studies with imatinib have been contradictory, ranging from impaired antigen-specific T-cell response to enhanced stimulation of tolerant T cells. Furthermore, although the immunomodulatory effects of TKIs on T cells, NK cells and dendritic cells have been explored in vitro, little is known of their potential impact on B cells. To characterize the in vivo immunomodulatory effects of TKIs, 51 patients with CP-CML in complete cytogenetic response (CCyR) on standard dose IM (n=26), DAS (n=14) or NIL (n=12) and 28 adult controls were recruited during two influenza seasons (2008 and 2009). Patients and controls were concomitantly immunized with an influenza vaccine (Ph. Eur. 2008/2009 or Ph. Eur. 2009/2010, CSL Biotherapies) and with the 23-valent polysaccharide pneumococcal vaccine (Pneumovax II; Sanofi Pasteur MSD). Peripheral blood mononuclear cells (PBMCs) and serum samples were collected from patients and donors prior to vaccination and T and B responses to vaccination were assessed at 4 weeks and at 2–3 months post-immunization. T-cell responses to influenza vaccine were analyzed quantitatively and qualitatively using flow cytometry and intracellular cytokine assay for TNF-α, IFN-γ, IL-2 and the cytotoxicity marker CD107a. Serum titers of IgM and IgG pneumococcal antibodies were determined by ELISA. Analysis of B cell subsets was performed using flow cytometry and correlated with the pneumococcal IgM and IgG humoral response. Following vaccination, Flu-specific T cells were detected in 24/51 (47.0%) patients on TKI and 15/24 (62.5%) healthy controls (p=0.16). Polyfunctional T-cell responses (defined as the production of 2 or more cytokines or one cytokine and the cytotoxic marker CD107a) were induced in 6/10 evaluable patients and 4/8 normal controls (p=1.0). T-cell independent humoral responses to vaccination were assessed in 45 patients and 12 healthy controls by measuring pneumococcal IgM titers. Four weeks postimmunization, 11/12 (92%) controls achieved IgM pneumococcal Ab titers >80 U/ml compared to only 23/45 (53%) CML patients on TKI (p=0.010). The pneumococcal IgM titers were significantly lower in patients with CML on TKI compared to healthy controls (median, 89.0 U/ml, range 5–200 vs 200 U/ml, range 58–200, p=0.0006), suggesting that CML patients on TKI have impaired IgM responses to vaccination. To further characterize the humoral immune response to Pneumovax, we stratified CML patients based on their pneumococcal IgM titers. We found a significantly lower percentage of IgM memory B cell subset in CML patients who failed to mount a significant pneumococcal IgM response compared to patients who achieved a pneumococcal IgM response (median, 6.25% vs 16.4%, p=0.0059) and healthy controls (median, 6.25% vs 14.3%, p=0.0086). Furthermore, we found a significant correlation between anti-pneumococcal IgM titers and IgM memory B cell percentage (Spearman rank correlation test, r=0.61, p<.0001). To investigate a putative role of TKIs for the loss of IgM memory B cell subsets in CML patients, we determined the frequencies of IgM memory B cells in paired samples collected from 15 CML-CP patients at diagnosis (i.e. prior to initiating IM) and once CCyR was achieved. We found a significant decrease in the percentage of IgM memory B cells in CML-CP patients treated with IM compared to the pre-treatment sample (median 9.4%, vs. 15.2% respectively, p=0.0023). In summary, patients with CML on TKIs can mount effective T-cell immune responses to influenza vaccination. Our data suggest that TKIs (IM, DAS and NIL) impair T-cell independent humoral immune responses, namely IgM responses to vaccination. This is associated with a loss of IgM memory B cell subsets. Further investigations to understand the mechanisms by which TKIs may impact B-cell subsets are underway. These results are of particular interest in terms of the long-term effects of TKI on tumor immune surveillance and susceptibility to infections and may have implication for vaccination strategies in CML patients. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Ness ◽  
Shiming Lin ◽  
John R. Gordon

Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.


2021 ◽  
pp. annrheumdis-2021-220435
Author(s):  
Theresa Graalmann ◽  
Katharina Borst ◽  
Himanshu Manchanda ◽  
Lea Vaas ◽  
Matthias Bruhn ◽  
...  

ObjectivesThe monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses.MethodsCD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens.ResultsRituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I.ConclusionsDepending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Pritesh Desai ◽  
Vikas Tahiliani ◽  
Georges Abboud ◽  
Jessica Stanfield ◽  
Shahram Salek-Ardakani

ABSTRACTRespiratory infection with vaccinia virus (VacV) elicits robust CD8+T cell responses that play an important role in host resistance. In the lung, VacV encounters multiple tissue-resident antigen-presenting cell (APC) populations, but which cell plays a dominant role in priming of virus-specific CD8+effector T cell responses remains poorly defined. We used Batf3−/−mice to investigate the impact of CD103+and CD8α+dendritic cell (DC) deficiency on anti-VacV CD8+T cell responses. We found that Batf3−/−mice were more susceptible to VacV infection, exhibiting profound weight loss, which correlated with impaired accumulation of gamma interferon (IFN-γ)-producing CD8+T cells in the lungs. This was largely due to defective priming since early in the response, antigen-specific CD8+T cells in the draining lymph nodes of Batf3−/−mice expressed significantly reduced levels of Ki67, CD25, and T-bet. These results underscore a specific role for Batf3-dependent DCs in regulating priming and expansion of effector CD8+T cells necessary for host resistance against acute respiratory VacV infection.IMPORTANCEDuring respiratory infection with vaccinia virus (VacV), a member ofPoxviridaefamily, CD8+T cells play important role in resolving the primary infection. Effector CD8+T cells clear the virus by accumulating in the infected lungs in large numbers and secreting molecules such as IFN-γ that kill virally infected cells. However, precise cell types that regulate the generation of effector CD8+T cells in the lungs are not well defined. Dendritic cells (DCs) are a heterogeneous population of immune cells that are recognized as key initiators and regulators of T-cell-mediated immunity. In this study, we reveal that a specific subset of DCs that are dependent on the transcription factor Batf3 for their development regulate the magnitude of CD8+T cell effector responses in the lungs, thereby providing protection during pulmonary VacV infection.


2008 ◽  
Vol 82 (11) ◽  
pp. 5618-5630 ◽  
Author(s):  
Ronald S. Veazey ◽  
Paula M. Acierno ◽  
Kimberly J. McEvers ◽  
Susanne H. C. Baumeister ◽  
Gabriel J. Foster ◽  
...  

ABSTRACT Previously we have shown that CD8+ T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4+ T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8+ T-cell responses on the magnitude of the CD4+ T-cell depletion, we investigated the effect of CD8+ lymphocyte depletion during primary SIV infection on CD4+ T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8+ lymphocyte-depletion changed the dynamics of CD4+ T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4+ T cells were restored to baseline levels. These CD4+ T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8+ lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5+ CD45RA− CD4+ T cells in CD8+ lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4+ T cells were eliminated more efficiently in CD8+ lymphocyte-depleted animals. Also, CD8+ lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4+ T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8+ T-cell responses are absolutely critical to initiate at least partial control of SIV infection.


2021 ◽  
Author(s):  
Pablo Garcia-Valtanen ◽  
Christopher Martin Hope ◽  
Makutiro Ghislain Masavuli ◽  
Arthur Eng Lip Yeow ◽  
Harikrishnan Balachandran ◽  
...  

Background The duration and magnitude of SARS-CoV-2 immunity after infection, especially with regard to the emergence of new variants of concern (VoC), remains unclear. Here, immune memory to primary infection and immunity to VoC was assessed in mild-COVID-19 convalescents one year after infection and in the absence of viral re-exposure or COVID-19 vaccination. Methods Serum and PBMC were collected from mild-COVID-19 convalescents at ~6 and 12 months after a COVID-19 positive PCR (n=43) and from healthy SARS-CoV-2-seronegative controls (n=15-40). Serum titers of RBD and Spike-specific Ig were quantified by ELISA. Virus neutralisation was assessed against homologous, pseudotyped virus and homologous and VoC live viruses. Frequencies of Spike and RBD-specific memory B cells were quantified by flow cytometry. Magnitude of memory T cell responses was quantified and phenotyped by activation-induced marker assay, while T cell functionality was assessed by intracellular cytokine staining using peptides specific to homologous Spike virus antigen and four VoC Spike antigens. Findings At 12 months after mild-COVID-19, >90% of convalescents remained seropositive for RBD-IgG and 88.9% had circulating RBD-specific memory B cells. Despite this, only 51.2% convalescents had serum neutralising activity against homologous live-SARS-CoV-2 virus, which decreased to 44.2% when tested against live B.1.1.7, 4.6% against B.1.351, 11.6% against P.1 and 16.2%, against B.1.617.2 VoC. Spike and non-Spike-specific T cells were detected in >50% of convalescents with frequency values higher for Spike antigen (95% CI, 0.29-0.68% in CD4+ and 0.11-0.35% in CD8+ T cells), compared to non-Spike antigens. Despite the high prevalence and maintenance of Spike-specific T cells in Spike 'high-responder' convalescents at 12 months, T cell functionality, measured by cytokine expression after stimulation with Spike epitopes corresponding to VoC was severely affected. Interpretations SARS-CoV-2 immunity is retained in a significant proportion of mild COVID-19 convalescents 12 months post-infection in the absence of re-exposure to the virus. Despite this, changes in the amino acid sequence of the Spike antigen that are present in current VoC result in virus evasion of neutralising antibodies, as well as evasion of functional T cell responses.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2365
Author(s):  
Christina E. Zielinski

T helper cell responses are tailored to their respective antigens and adapted to their specific tissue microenvironment. While a great proportion of T cells acquire a resident identity, a significant proportion of T cells continue circulating, thus encountering changing microenvironmental signals during immune surveillance. One signal, which has previously been largely overlooked, is sodium chloride. It has been proposed to have potent effects on T cell responses in the context of autoimmune, allergic and infectious tissue inflammation in mouse models and humans. Sodium chloride is stringently regulated in the blood by the kidneys but displays differential deposition patterns in peripheral tissues. Sodium chloride accumulation might furthermore be regulated by dietary intake and thus by intentional behavior. Together, these results make sodium chloride an interesting but still controversial signal for immune modulation. Its downstream cellular activities represent a potential therapeutic target given its effects on T cell cytokine production. In this review article, we provide an overview and critical evaluation of the impact of this ionic signal on T helper cell polarization and T helper cell effector functions. In addition, the impact of sodium chloride from the tissue microenvironment is assessed for human health and disease and for its therapeutic potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asuka Tanaka ◽  
Kentaro Ide ◽  
Yuka Tanaka ◽  
Masahiro Ohira ◽  
Hiroyuki Tahara ◽  
...  

AbstractPretransplant desensitization with rituximab has been applied to preformed donor-specific anti-human leukocyte antigen antibody (DSA)-positive recipients for elimination of preformed DSA. We investigated the impact of pretransplant desensitization with rituximab on anti-donor T cell responses in DSA-positive transplant recipients. To monitor the patients’ immune status, mixed lymphocyte reaction (MLR) assays were performed before and after desensitization with rituximab. Two weeks after rituximab administration, the stimulation index (SI) of anti-donor CD4+ T cells was significantly higher in the DSA-positive recipients than in the DSA-negative recipients. To investigate the mechanisms of anti-donor hyper responses of CD4+ T cells after B cell depletion, highly sensitized mice models were injected with anti-CD20 mAb to eliminate B cells. Consistent with clinical observations, the SI values of anti-donor CD4+ T cells were significantly increased after anti-CD20 mAb injection in the sensitized mice models. Adding B cells isolated from untreated sensitized mice to MLR significantly inhibited the enhancement of anti-donor CD4+ T cell response. The depletion of the CD5+ B cell subset, which exclusively included IL-10-positive cells, from the additive B cells abrogated such inhibitory effects. These findings demonstrate that IL-10+ CD5+ B cells suppress the excessive response of anti-donor CD4+ T cells responses in sensitized recipients.


Sign in / Sign up

Export Citation Format

Share Document