The AP-1 Transcription Factor JunB Promotes Multiple Myeloma (MM) Cell Proliferation, Survival and Drug Resistance in the Bone Marrow Microenvironment

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3446-3446 ◽  
Author(s):  
Fengjuan Fan ◽  
Sonia Vallet ◽  
Martin Sattler ◽  
Giovanni Tonon ◽  
Muhammad Hasan Bashari ◽  
...  

Abstract MEK/ERK and NF-kB signaling pathways have been reported to play a key role in multiple myeloma (MM) survival, proliferation and drug resistance. These pathways regulate the activity of numerous transcription factors. For example, the activator protein-1 (AP-1) transcription factor has been implicated in a multitude of physiologic processes, but also tumorigenesis. However, the function of AP-1 in MM is largely unknown. Our data show a vast variety of AP-1 (c-Jun, JunB, JunD, c-Maf and c-Fos) expression levels in MM cells. Importantly, co-culture of MM cells with bone marrow stromal cells (BMSCs), i.e. isotypic primary BMSCs as well as BMSC lines KM-105 and HS-27A, rapidly and strongly induces expression of JunB, but not other AP-1 members. Previous studies have shown that JunB exerts opposite functions depending on the cellular origin and the physiopathological context. For example, it serves as a gatekeeper in acute and chronic myeloid leukemia, but as a positive regulator in Hodgkin's lymphomas and anaplastic large cell lymphomas. The relevance of JunB activity in MM growth, survival and drug resistance is elusive. First, our data demonstrate that induction of JunB is predominantly mediated by soluble factors secreted by BMSCs rather than direct MM-BMSC contact. Indeed, using cytokine arrays, we identified IL-6 among the most potent factors that trigger JunB expression. Mechanistically, JunB upregulation occurs at both transcriptional as well as translational level. Pharmacologic inhibition was used next in order to identify upstream signaling pathways, which mediate BMSC- induced JunB upregulation in MM cells. Our data show that activation of MEK/ERK or NF-kB is required for induction of JunB expression and AP-1 transcriptional activity. To delineate the specific functional role of JunB in MM pathogenesis, we transduced MM cells with pLKO.1-JunB shRNA or pLKO.1-scrambled shRNA (SCR). After puromycin- selection, effects of JunB knockdown on MM proliferation, survival and drug resistance were analyzed by 3H-thymidine incorporation, flow cytometry and western blot. Indeed, we observed significant inhibition of proliferation in MM/ JunB shRNA (decreased to ~ 25 – 40 %, p < 0.01) compared with MM/ SCR control cells, when co-cultured with BMSCs in particular. Moreover, our preliminary data show that knockdown of JunB overcomes resistance of MM cells against doxorubicin as well as melphalan. Furthermore, 4-hydroxytamoxifen (4-OHT) treatment of MM cell lines stably transduced with pMSCV-JunB-ER-IRES-GFP but not pMSCV-IRES-GFP induced significant AP-1 luciferase activity (~ 3.3 fold, p < 0.01) as well as MM cell proliferation. In ongoing experiments, the in vivo relevance of our in vitro data is evaluated in a xenograft mouse model inoculated with MM /JunB-ER-IRES-GFP and MM/ IRES-GFP cells. Finally, gene expression profiles on > 1000 MM patient samples of different prognostic groups were compared to samples from healthy donors using the gene set enrichment analysis (GSEA). Our results further support a key role for JunB in MM pathogenesis. In summary, our data demonstrate for the first time an important role of JunB/AP-1 in MM tumorigenesis and strongly propose it as a novel therapeutic target in MM. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4987-4987
Author(s):  
Hiroshi Ikeda ◽  
Yuka Aoki ◽  
Nasanori Nojima ◽  
Hiroshi Yasui ◽  
Toshiaki Hayashi ◽  
...  

Abstract Abstract 4987 The Bone marrow (BM) microenvironment plays crucial role in pathogenesis of Multiple myeloma(MM). Myeloma cells contacts with bone marrow stromal cells (BMSCs), which secrete factors/cytokines, promoting tumor cell growth and survival. Paracrine secretion of cytokines(i. e., interleukin-6 (IL-6) insulin-like growth factor-1, inflammatory protein-1a) in BM stromal cells promotes multiple myeloma cell proliferation and protects against drug-induced cytotoxicity. These cytokines provide stimulatory signals for multiple myeloma growth and survival. Bone involvement is a common feature in MM patient, solid and hematologic cancers. MM localizes to the bone in nearly all patients ranges between 40% and 75%. Disease-related skeletal complications result in significant morbidity due to pain, pathologic fractures and spinal cord compression. The bone microenvironment creates a supportive niche for tumor growth. Osteoclasts and bone marrow stromal cells, along with extracellular matrix and cytokines stimulate tumor cell proliferation and confer chemoresistance. Therefore, the reciprocal interactions between tumor cells, osteoclasts, osteoblasts, and bone marrow stromal cells present an important. In current study, monocyte can directly promote mesenchymal stem cells osteogenic differentiation through cell contact interactions, thus resulting in the production of osteogenic factors by the monocytes. This mechanism is mediated by the activation of STAT3 signaling pathway in the mesechymal stem cells that leads to the upregulation of Osteoblasts-associated genes such as Runx2 and alkaline phosphatase (ALP), and the down-regulation of inhibitors such as DKK1 to drive the differentiation of mesechymal stem cells into osteoblasts. In this study, we examined the role of monocyte, component of BM cells, as a potential niche component that supports myeloma cells. We investigated the proliferation of MM cell lines cultured alone or co-cultured with BM stromal cells, monocytes, or a combination of BM stromal cells and monocytes. Consistently, we observed increased proliferation of MM cell lines in the presence of either BM stromal cells or monocytes compared to cell line-only control. Furthermore, the co-culture of BM stromal cells plus monocytes induced the greatest degree of proliferation of myeloma cells. In addition to increased proliferation, BMSCs and monocytes decreased the rate of apoptosis of myeloma cells. Our results therefore suggest that highlights the role of monocyte as an important component of the BM microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 122-122 ◽  
Author(s):  
Mariateresa Fulciniti ◽  
Nicola Amodio ◽  
Rajya Bandi ◽  
Rao H. Prabhala ◽  
Sophia Adamia ◽  
...  

Abstract Deregulated expression of microRNAs (miR) is a hallmark of cancer. Tumor suppressor miRNAs are generally down-regulated in cancer cells compared to their normal counterpart, and their enforced expression indeed represents a promising strategy for cancer treatment. We have found miR-23b to be downregulated in CD138+ myeloma cells from 38 multiple myeloma (MM) patients and 18 plasma cell leukemia (PCL) patients compared to normal PCs. Decreased expression of miR-23b was further confirmed in an independent dataset of 66 MM patients by TaqMan miRNA assays. The downregulation of miR-23b expression was also observed in several myeloma cells lines when compared with PBMC and BMSC. Interestingly, interaction of BMSC with MM cells resulted in further decrease in miR-23b expression in both cell types. Moreover, Interleukin-6 (IL-6) also suppressed the expression of miR-23b in a time- and dose- dependent pattern, indicating that the human bone marrow microenvironment (huBMM) modulates miR-23b levels. miR-23b is commonly repressed in autoimmune conditions by IL-17, a cytokine shown to promote myeloma cell growth and inhibit its immune function. We have indeed observed further decrease in miR-23b expression in MM cells after IL-17 treatment for 24 hours. We have also observed downregulation of miR-23b in CD19+ Waldenstrom’s Macroglobulinemia (WM) cells compared to CD19+ B cells from healthy donors, which was further decreased in the presence of components of the WM bone marrow milieu. We further assessed the functional significance of miR-23b by both gain- and loss-of-function studies. A significant decrease in cell proliferation and survival, along with induction of caspase 3/7 activity was observed over time in miR-23b mimic–transfected myeloma (H929, KMS11) and WM cell lines (MWCL1) with low miR-23b expression. At the molecular level, we have identified Sp1, a transcription factor endowed with oncogenic activity in MM and WM, as a target of miR-23b. Expression of miR-23b decreased Sp1 mRNA levels via 3’UTR binding, as assessed in luciferase reporter assays. On the other hand, genetic and/or pharmacological inhibition of Sp1 led to miR-23b upregulation, thus highlighting the occurrence of a feedback loop between miR-23b and its target. Of note, miR-23b transfection significantly reduced Sp1-driven NF-kB activity in MM and WM cells. Finally, c-Myc, an important oncogenic transcription factor known to stimulate MM cell proliferation, has been shown to transcriptionally repress miR-23b. Moreover, treatment with the demethylating agent 5-aza-deoxycitidine significantly increase the expression of miR-23b in MM1S and KMS-11 cells suggesting that promoter methylation may be an additional mechanism of miR-23b suppression in myeloma. Thus MYC-dependent miR-23b repression in myeloma cells may allow activation of oncogenic transcription factors Sp1 and NF-κB, representing the first feed forward loop with critical growth and survival role in myeloma. Taken together, these data support a model in which the humoral environment reduces miR-23b expression in tumor cells, suggesting a tumor suppressor role in MM and WM and highlighting the potential of a miR-23b-based replacement therapy to treat these hematologic malignancies. Disclosures: Anderson: gilead: Consultancy; onyx: Consultancy; celgene: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership.


2021 ◽  
Author(s):  
Emilie Logie ◽  
Louis Maes ◽  
Joris Van Meenen ◽  
Peter HL De Rijk ◽  
Mojca Strazisar ◽  
...  

Ferroptosis is a lipid peroxidation-dependent mechanism of regulated cell death known to suppress tumor proliferation and progression. Although several genetic and protein hallmarks have been identified in ferroptotic cell death, it remains challenging to fully characterize ferroptosis signaling pathways and to find suitable biomarkers. Moreover, changes taking place in the epigenome of ferroptotic cells remain poorly studied. In this context, we aimed to investigate the role of chromatin remodeler forkhead box protein A1 (FOXA1) in RSL3-treated multiple myeloma cells because, similar to ferroptosis, this transcription factor has been associated with changes in the lipid metabolism, DNA damage, and epithelial-to-mesenchymal transition (EMT). RNA sequencing and Western blot analysis revealed that FOXA1 expression is consistently upregulated upon ferroptosis induction in different in vitro and in vivo disease models. In silico motif analysis and transcription factor enrichment analysis further suggested that ferroptosis-mediated FOXA1 expression is orchestrated by specificity protein 1 (Sp1), a transcription factor known to be influenced by lipid peroxidation. Remarkably, FOXA1 upregulation in ferroptotic myeloma cells did not alter hormone signaling or EMT, two key downstream signaling pathways of FOXA1. CUT&RUN genome-wide transcriptional binding site profiling showed that GPX4-inhibition by RSL3 triggered loss of binding of FOXA1 to pericentromeric regions in multiple myeloma cells, suggesting that this transcription factor is possibly involved in genomic instability, DNA damage, or cellular senescence under ferroptotic conditions.


2021 ◽  
Vol 28 ◽  
Author(s):  
Alireza Hosseini ◽  
Michael R Hamblin ◽  
Hamed Mirzaei ◽  
Hamid Reza Mirzaei

: The unique features of the tumor microenvironment (TME) govern the biological properties of many cancers, including hematological malignancies. TME factors can trigger invasion, and protect against drug cytotoxicity by inhibiting apoptosis and activating specific signaling pathways (e.g. NF-ΚB). TME remodeling is facilitated due to the high self-renewal ability of the bone marrow. Progressing tumor cells can alter some extracellular matrix (ECM) components which act as a barrier to drug penetration in the TME. The initial progression of the cell cycle is controlled by the MAPK pathway (Raf/MEK/ERK) and Hippo pathway, while the final phase is regulated by the PI3K/Akt /mTOR and WNT pathways. In this review we summarize the main signaling pathways involved in drug resistance (DR) and some mechanisms by which DR can occur in the bone marrow. The relationship between autophagy, endoplasmic reticulum stress, and cellular signaling pathways in DR and apoptosis are covered in relation to the TME.


Author(s):  
Banban Li ◽  
Ruinan Jia ◽  
Wei Li ◽  
Ying Zhou ◽  
Dongmei Guo ◽  
...  

BackgroundChemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and bone marrow stromal cells (BMSCs) protect leukemia cells from chemotherapy eventually leading to recurrence. This study was designed to investigate the role of p21-activated kinase 1 (PAK1) in AML progression and chemosensitivity, highlighting the mechanism of stroma-mediated chemoresistance.MethodsThe GEPIA and TCGA datasets were used to analyze the relationship between PAK1 mRNA expression and various clinical parameters of AML patients. Cell proliferation and apoptosis were examined to evaluate the role of PAK1 on chemosensitivity in AML by silencing PAK1 with shRNA or small molecular inhibitor. Human BMSC (HS-5) was utilized to mimic the leukemia bone marrow microenvironment (BMM) in vitro, and co-culture model was established to investigate the role of PAK1 in BMSC-mediated drug resistance.Resultsp21-activated kinase 1 high expression was shown to be associated with shorter overall survival in AML patients. The silence of PAK1 could repress cell proliferation, promote apoptosis, and enhance the sensitivity of AML cells to chemotherapeutic agents. More importantly, BMSCs induced PAK1 up-regulation in AML cells, subsequently activating the ERK1/2 signaling pathway. The effect of BMSC-mediated apoptotic-resistance could be partly reversed by knock down of PAK1.Conclusionp21-activated kinase 1 is a potential prognostic predictor for AML patients. PAK1 may play a pivotal role in mediating BMM-induced drug resistance, representing a novel therapeutic target in AML.


Haematologica ◽  
2021 ◽  
Author(s):  
Kanagaraju Ponnusamy ◽  
Maria Myrsini Tzioni ◽  
Murshida Begum ◽  
Mark E Robinson ◽  
Valentina S Caputo ◽  
...  

Multiple myeloma is a malignancy of plasma cells (PC) initiated and driven by primary and secondary genetic events. Nevertheless, myeloma PC survival and proliferation might be sustained by non-genetic drivers. Z-DNA-binding protein 1 (ZBP1; also known as DAI) is an interferon-inducible, Z-nucleic acid sensor that triggers RIPK3-MLKL-mediated necroptosis in mice. ZBP1 also interacts with TBK1 and the transcription factor IRF3 but the function of this interaction is unclear, and the role of ZBP1-IRF3 axis in cancer is not known. Here we show that ZBP1 is selectively expressed in late B cell development in both human and mouse cells and it is required for optimal T-cell-dependent humoral immune responses. In myeloma PC, interaction of constitutively expressed ZBP1 with TBK1 and IRF3 results in IRF3 phosphorylation. IRF3 directly binds and activates cell cycle genes, in part through co-operation with the PC lineage-defining transcription factor IRF4, and thereby promoting myeloma cell proliferation. This generates a novel, potentially therapeutically targetable and relatively selective myeloma cell addiction to the ZBP1-IRF3 axis. Our data also show a non-canonical function of constitutive ZBP1 in human cells and expand our knowledge of the role of cellular immune sensors in cancer biology.


Sign in / Sign up

Export Citation Format

Share Document