Mir-146a and Mir-146b Regulate Human Dendritic Cell Apoptosis and Cytokine Production By Targeting of TRAF6 and IRAK1

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4118-4118
Author(s):  
Haein Park ◽  
Xin Huang ◽  
Changming Lu ◽  
Mitchell S. Cairo ◽  
Xianzheng Zhou

Abstract MicroRNA (miRNA) regulation of dendritic cell (DC) development and function is not fully understood. We have previously reported 27 differentially expressed miRNAs during human monocyte differentiation into immature DCs (imDCs) and mature DCs (mDCs). Here, we aimed at uncovering the functional role of miR-146a and miR-146b (miR-146a/b) during this differentiation process. To investigate miR-146a and miR-146b expression during human monocyte differentiation into imDCs and mDCs, monocytes were differentiated into imDCs with GM-CSF and IL-4 and matured with IL-1β, IL-6, TNF-α, and PGE2. We found by qRT-PCR that expression of miR-146a/b was dramatically increased upon monocyte differentiation into imDCs (miR-146a, 10-fold; miR-146b, 37-fold at day6; n=4; p value of Student t test<0.05) and mDCs (miR-146a, 51-fold; miR-146b, 79-fold; n=4; p<0.005). Up-regulation of miR-146a/b in mDCs was predominantly mediated by IL-1β but not IL-6, TNF-a, or PGE2 (n=3; p<0.01). DC apoptosis is important for self-tolerance and immunity. We then evaluated the effect of altering miR-146a/b expression levels on DC apoptosis by Annexin V/PI staining. Silencing of miR-146a, miR-146b or both in imDCs (Fig. 1A) and mDCs significantly prevented DC from apoptosis (Fig. 1A; miR-146a, 24%±3.1; miR-146b, 26%±1.7; miR-146a/b; 23%±2.8 vs control, 46%±2.3 of Annexin V+ populations; n=8; p<0.005) whereas overexpression of miR-146a, miR-146b or both in imDCs (Fig. 1B) and mDCs significantly increased the proportion of apoptotic cells (Fig. 1B; 46%±1.9, 47%±2.1, 45%±2.3 vs 36%±3.3; n=6; p<0.05). These results indicate that miR-146a/b may function as pro-apoptotic regulators during human monocyte differentiation into imDCs and mDCs. It is known that the NF-κB pathway regulates DC development, function and survival, and that TRAF6 and IRAK1 are major signal transducers in the NF-κB pathway. In addition, both TRAF6 and IRAK1 are known target genes of miR-146a. Indeed, miR-146a/b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 mRNA and protein expression (n=4; p<0.05). Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs significantly enhanced DC apoptosis (n=4; p<0.05). By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival compared to control lentivirus transduced cells (n=2; p<0.05). To confirm that miR-146a/b-induced human DC apoptosis is involved in suppression of the NF-κB pathway, at least in part through down regulation of the NF-κB signaling transducers TRAF6 and IRAK1, we examined the protein level of IκB as a negative regulator of NF-κB and Bcl-2 as a known downstream anti-apoptotic molecule of the NF-κB pathway. Silencing of miR-146a/b in imDCs and mDCs significantly decreased IκBα and increased Bcl-2 expression whereas overexpression of miR-146a and/or miR-146b or silencing of TRAF6 and/or IRAK1 significantly increased IκBα and decreased Bcl-2 expression in imDCs and mDCs (n=4; p<0.01). These results indicate that miR-146a/b modulate DC apoptosis through inhibition of NF-κB activation via targeting TRAF6 and IRAK1. Next, we investigated whether miR-146a/b regulates pro-inflammatory cytokine production in DCs. We found that IL-12p70, IL-6 and TNF-α production were significantly enhanced after miR-146 and/or miR-146b silencing during DC maturation (n≥2; p<0.05), although altering miR-146a/b expression had little effect on DC maturation (n=6). By contrast, IL-12p70, IL-6 and TNF-α production was highly reduced after miR-146a and/or miR-146b overexpression (n≥2; p<0.05). In conclusion, we have demonstrated three important findings in this report. First, expression of both miR-146a and miR-146b is up-regulated during human monocyte differentiation into imDCs and mDCs. Secondly, although miR-146a and miR-146b do not appear to play a role in DC maturation, they may be critical regulators of DC apoptosis and cytokine production. Thirdly, mechanistically, miR-146a/b targets TRAF6 and IRAK1, leading to inhibition of NF-κB and reduced expression of Bcl-2. We thus demonstrate for the first time that miR-146a/b regulates human DC apoptosis and cytokine production, uncovering a new negative feedback mechanism for miR-146 in controlling overstimulation of the immune responses (Fig. 2). Disclosures No relevant conflicts of interest to declare.

2003 ◽  
Vol 198 (8) ◽  
pp. 1277-1283 ◽  
Author(s):  
Virginie Doyen ◽  
Manuel Rubio ◽  
Deborah Braun ◽  
Toshiaru Nakajima ◽  
Jun Abe ◽  
...  

Thrombospondin 1 (TSP) elicits potent antiinflammatory activities in vivo, as evidenced by persistent, multiorgan inflammation in TSP null mice. Herein, we report that DCs represent an abundant source of TSP at steady state and during activation. Human monocyte-derived immature dendritic cells (iDCs) spontaneously produce TSP, which is strongly enhanced by PGE2 and to a lesser extent by transforming growth factor (TGF) β, two soluble mediators secreted by macrophages after engulfment of damaged tissues. Shortly after activation via danger signals, DCs transiently produce interleukin (IL) 12 and tumor necrosis factor (TNF) α, thereby eliciting protective and inflammatory immune responses. Microbial stimuli increase TSP production, which is further enhanced by IL-10 or TGF-β. The endogenous TSP produced during early DC activation negatively regulates IL-12, TNF-α, and IL-10 release through its interactions with CD47 and CD36. After prolonged activation, DCs extinguish their cytokine synthesis and become refractory to subsequent stimulation, thereby favoring the return to steady state. Such “exhausted” DCs continue to release TSP but not IL-10. Disrupting TSP–CD47 interactions during their restimulation restores their cytokine production. We conclude that DC-derived TSP serves as a previously unappreciated negative regulator contributing to arrest of cytokine production, further supporting its fundamental role in vivo in the active resolution of inflammation and maintenance of steady state.


2007 ◽  
Vol 75 (4) ◽  
pp. 1667-1678 ◽  
Author(s):  
Rachele Riganò ◽  
Brigitta Buttari ◽  
Elisabetta Profumo ◽  
Elena Ortona ◽  
Federica Delunardo ◽  
...  

ABSTRACT Despite inducing a strong host cellular and humoral immune response, the helminth Echinococcus granulosus is a highly successful parasite that develops, progresses, and ultimately causes chronic disease. Although surgery remains the preferred therapeutic option, pharmacological research now envisages antihelminthic strategies. To understand the mechanisms that E. granulosus uses to escape host immunosurveillance and promote chronic infection, we investigated how two hydatid cyst components, purified antigen B (AgB) and sheep hydatid fluid (SHF), act on host dendritic cell (DC) differentiation from monocyte precursors and how they influence maturation of DC that have already differentiated. We evaluated the immunomodulatory potential of these antigens by performing immunochemical and cytofluorimetric analyses of monocyte-derived DCs from healthy human donors. During monocyte differentiation, AgB and SHF downmodulated CD1a expression and upregulated CD86 expression. Compared with immature DCs differentiated in medium alone (iDCs), AgB- and SHF-differentiated cells stimulated with lipopolysaccharide included a significantly lower percentage of CD83+ cells (P < 10−4) and had weaker costimulatory molecule expression. When stimulated with AgB and SHF, iDCs matured and primed lymphocytes towards the Th2 response typical of E. granulosus infection. SHF and particularly AgB reduced the production of interleukin-12p70 (IL-12p70) and tumor necrosis factor alpha in lipopolysaccharide-stimulated iDCs. Anti-IL-10 antibodies increased the levels of IL-12p70 secretion in AgB- and SHF-matured DCs. AgB and SHF induced interleukin-1 receptor-associated kinase phosphorylation and activated nuclear factor-κB, suggesting that Toll-like receptors could participate in E. granulosus-stimulated DC maturation. These results suggest that E. granulosus escapes host immunosurveillance in two ways: by interfering with monocyte differentiation and by modulating DC maturation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8294 ◽  
Author(s):  
Adila Aipire ◽  
Mahepali Mahabati ◽  
Shanshan Cai ◽  
Xianxian Wei ◽  
Pengfei Yuan ◽  
...  

Background The enhancement of immunity is very important for immunocompromised patients such as cancer patients with radiotherapy or chemotherapy. Glycyrrhiza uralensis has been used as food and medicine for a long history. G. uralensis polysaccharides (GUPS) were prepared and its immunostimulatory effects were investigated. Methods Human monocyte-derived dendritic cells (DCs) and murine bone marrow-derived DCs were treated with different concentrations of GUPS. The DCs maturation and cytokine production were analyzed by flow cytometry and ELISA, respectively. Inhibitors and Western blot were used to study the mechanism of GUPS. The immunostimulatory effects of GUPS were further evaluated by naïve mouse model and immunosuppressive mouse model induced by cyclophosphamide. Results GUPS significantly promoted the maturation and cytokine secretion of human monocyte-derived DCs and murine bone marrow-derived DCs through TLR4 and down-stream p38, JNK and NF-κB signaling pathways. Interestingly, the migration of GUPS treated-DCs to lymph node was increased. In the mouse model, GUPS increased IL-12 production in sera but not for TNF-α. Moreover, GUPS ameliorated the side effect of cyclophosphamide and improved the immunity of immunosuppressive mice induced by cyclophosphamide. These results suggested that GUPS might be used for cancer therapy to ameliorate the side effect of chemotherapy and enhance the immunity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1210-1210 ◽  
Author(s):  
Athanasios Papadas ◽  
Evan Flietner ◽  
Zachary Morrow ◽  
Joshua Wiesner ◽  
Alexander Cicala ◽  
...  

Regulated proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) through the actions of ADAMTS-proteases, is associated with enhanced CD8+ infiltration in both hematopoietic and solid tumors. However, it is unclear whether the enhanced CD8+ infiltration results from proteolysis-mediated depletion of precursor VCAN at the tumor site or from generation of bioactive proteolytic fragments ("matrikines") (e.g., the 441-aa N-terminal fragment of V1-VCAN isoform, versikine). We have previously shown that versikine promotes Batf3-dendritic cell (DC) generation from FLT3L-mobilized bone marrow (BM) progenitors in vitro. However, the effects of versikine in DC homeostasis in the tumor microenvironment in vivo are unknown. To investigate the effects of versikine in DC homeostasis in vivo, we utilized the first Ras-driven myeloma (MM) model (VQ model- Rajagopalan et al., Blood 132:1006, 2018) as well as transplantable solid tumor models in both C57BL/6J (LLC lung carcinoma) and Balb/c (4T1 mammary carcinoma) backgrounds. Tumor cells were stably engineered to secrete HA-tagged versikine vs. empty-vector (EV) controls. EV-VQ or versikine-VQ myeloma cells were implanted intracardiacally into C57BL/6J syngeneic recipients and mice were monitored until they developed myeloma-related end-organ damage (hindlimb paralysis). Both groups of mice were paralyzed at similar rates. Intratumoral conventional DCs (CD138-CD45+, CD11chi,MHC IIhiLy6C-, CD64-) clustered into two populations: cDC1 (Batf3-DC: CD24hi,CD11blo), a subset with crucial activity in cross-priming anti-tumor CD8+ T cells, and cDC2 (CD24lo, CD11bhi). Versikine enhanced intratumoral Batf3-DC frequency/infiltration, while cDC2 levels were diminished in versikine-VQ BM (Figure 1A)(Batf3-DC: 48% in EV-VQ vs. 72% in versikine-VQ, p-value= 0.0246; cDC2: 52% in EV-VQ vs. 28% in versikine-VQ, p=0.0312). Monocytic-derived DC (Mo-DC: CD11chi, MHC IIhi, Ly6C+, CD64+) frequency remained unchanged. Versikine's effects were replicated in 2 solid tumor models. Versikine-expressing tumors were characterized by significantly enhanced Batf3-DC infiltration (Fig. 1A, p-value= 0.0079 for 4T1 model and <0.0001 for LLC model), whereas cDC2 numbers were diminished (p-value: 0.0079 and <0.0001 respectively). Adoptive transfer of CD45.2+ pre-DC (SIRPaint, FLIT3+, CD11c+, MHC II-, Celltrace+) in LLC-EV and LLC-versikine tumors in CD45.1+ recipients did not show any differences in 3-day differentiation potential of DC precursors, implicating other mechanisms to explain the steady-state imbalance in DC subset frequencies. To examine whether versikine's effects on the intratumoral DC milieu in vivo could be therapeutically harnessed, we compared responses to STING agonist therapy between versikine-expressing and EV tumors. LLC-EV-OVA and LLC-versikine-OVA (ovalbumin, a model antigen) -expressing tumors received therapeutic intratumoral injections of DMXAA, a murine STING agonist. Analysis of splenocytes 5 days later showed a significant increase in the frequency of OVA antigen-specific, CD8+ (MHCI:SIINFEKL tetramer+) splenocytes in LLC-versikine-bearing animals (Figure 1B). Interestingly, there was a marked increase in total central memory T splenocytes (TCM) (CD62LhiCD44hi) harvested from LLC-versikine tumor-bearing mice. We conclude that versikine influences the DC milieu in the tumor bed with promotion of intratumoral cross-presenting Batf3-DC and depletion of the cDC2 subset. Our findings highlight an unappreciated facet of immune regulation of the tumor microenvironment through matrix proteolytic fragments ("matrikines"). Whereas detection of native VCAN proteolysis on myeloma biopsies (see abstract by Dhakal et al.in this meeting) portends adverse outcomes likely due to the tolerogenic effects of accumulated precursor VCAN at the tumor site, therapeutic use of the isolated, purified fragments may promote tumor innate sensing and effector priming. VCAN-matrikines, through their effects on intratumoral Batf3-DC and antigen-specific CD8+ T cell infiltration, may potentiate in situ vaccination strategies across diverse hematopoietic and solid tumor types. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3218-3218
Author(s):  
Thomas Luft ◽  
Andreas Wagner ◽  
Michael Conzelmann ◽  
Sascha Dietrich ◽  
Oliver Krämer ◽  
...  

Abstract Abstract 3218 Inhibition of JAK1 is an emerging clinical concept that has promise for a variety of autoimmune diseases, myeloproliferative diseases and post-transplant immunosuppression, but similarly raises concerns regarding immunosuppressive side effects. At the example of IL-12p70 production in human monocyte-derived dendritic cells we demonstrate that JAK1 has a dual role in differentially regulating effects of weak and strong activation stimuli. We have demonstrated recently that weak NF-kB-activating stimuli (e.g. CD40L or LPS) require complementary JAK1-targeting cytokines such as IFN-g to induce IL-12p70. This pathway involves RELA, CREL, JAK1 and/or JAK2, STAT1, IRF1 and IRF8 and is inhibited by RELB and TYK2 (Conzelmann et al. Biochem Pharm. 2010, 80(12):2074–86). Here we provide evidence for an alternative IL-12 stimulating pathway depending on strong NF-kB activating stimuli (e.g. intact E. coli or LPS plus IL-1b). siRNA silencing demonstrated that this pathway is specifically inhibited by JAK1 and the transcription factor STAT3, but is not influenced by any of the other JAK/STAT family members. Both IL-12p35 and p40 mRNA expression is directly inhibited by STAT3. Furthermore, ChIP-assays revealed that STAT3 binds directly to a combined STAT/NF-kB site at the IL-12p35 promoter without altering access of RELA and CREL. Extending the cytokine panel we found that E.coli-induced IL-6 and TNF-a production is similarly inhibited by the JAK1/STAT3 pathway whereas IL-10 expression is not affected. The observed dual effects of JAK1 are clearly confirmed by the JAK1/2 inhibitor INCB018424 (Ruxolitinib) which enhances E.coli-induced cytokines whilst strongly inhibiting cytokine production stimulated by CD40L/IFN-g. In summary, our study suggests that blockade of JAK1 specifically inhibits pro-inflammatory effects of weak, IFN-g dependent, NF-kB activating stimuli while enhancing inflammatory cytokine expression induced by strong activation stimuli. Inhibition of JAK1/2 by INCB018424 (Ruxolitinib) would therefore represent a novel immunosuppressive approach that may spare the immune defence against invading pathogens. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3153-3153
Author(s):  
Ashraf Badros ◽  
Sunita Philip ◽  
Patricia Lesho ◽  
Mariola Sadowska ◽  
Dianna Weikel ◽  
...  

Abstract Introduction BRONJ is a complex process that involves interplay of drug effect, bacteria-host immune interactions, and alteration of cytokines and inflammatory mediators leading to impaired healing of the mucosa. In this prospective study, we evaluated MM patients on long term BP therapy to define risk factors and explore cytokine changes in relationship to BP infusion and development of BRONJ. Methods and patients 110 MM patients were enrolled on the study and followed for 18 months. Patients were receiving zoledronic acid infusions once a month (n=75) or every 3 months (n=35) for those in stable remission > 3 years. Patients had clinical and oral evaluations at each visit. Blood samples were collected at baseline and every 6 months. Saliva samples were obtained every 3 months (before and 15 minutes after zoledronic acid infusions). Cytokine expression was analyzed using MULLIPLEX MAP Multiplex Assay (EMD Millipore, MA). Results Median time from MM diagnosis was 3.7 years (range: 2.5-13) for 100 patients; 10 newly diagnosed patients had a median of 7 months (range: 1-9). Median age was 57 years (range: 33-81); 58 were Caucasians, 49 African American, 3 Asians; 68 were males. At study entry, 87 (79%) patients were in remission: CR (n=35, 32%) of them 15 were in CR for > 7 years, PR (n=52, 47%) and PD (n=23, 21%). At study entry, 24 patients were not receiving any MM therapy; most were on maintenance with lenalidomide (n=59), and 10 were receiving induction. While on study, 50 patients progressed and received salvage therapies that included: bortezomib based (n=14), lenalidomide (n=6), carfilzomib (n=16) and other clinical trials (n=14). Thirteen patients died: 9 from complications of relapsed MM and 4 from other causes. Eighteen patients withdrew consent for sample collection and dental evaluations but were followed clinically. Most patients had history of dental procedures (extractions, n=80). The predominant pathology detected during dental evaluations included: moderate/severe periodontal disease (n=45) and gross dental caries (n=15); while on the study, 66 patients continued regular dental cleaning and 10 had dental extractions. During the 18 months of follow up, 14 patients developed new lesions with exposed bone for 8 weeks, meeting the definition of BRONJ. Median time from MM diagnosis to BRONJ was 5.7 years (the 95% CI: 1.9-12.0). BRONJ patients were in remission (n=9), receiving monthly zoledronic acid (n=9), dental extractions (n=9) and three had recurrent BRONJ. There was no association found between BRONJ and diabetes, smoking, or dental pathology. BRONJ treatment was conservative consisting of antibiotics and holding BP therapy. There are 5 patients who continue to have non-healing BRONJ lesions. Saliva and serum samples obtained during this study (baseline, midpoint (6-9 months), end (12-18 months) were assessed for the following cytokines: interleukins (IL)-1β, -6, and -17; TNF-α, IFN-α, TGF-β, MIP-1 α β, MMP-9, Osteopontin, Osteocalcin, RANKL, Osteoprotregerin, VEGF and EGF in 43 patients with ONJ (n=13) and without ONJ (n=30). There were statistically significant lower levels of VEGF and TGF- β (p= .04 and .02, respectively) in the serum overtime in patients who developed BRONJ, figure below. In the saliva cytokines levels were significantly lower in patients who developed BRONJ vs no BRONJ at baseline, before and after zoledronic acid infusions: [Mean pg/ml (SD), p value]: MIP-1 β [14 (3) vs 6(2), p=0.01]; IL-1 β [1824 (1518) vs 72 (38), p=0.04]; IL-6 [15 (4) vs 3 (3), p=0.02]; TNF-α [10 (3) vs 3 (2), p=0.09]. Osteoprotregerin [213 (39) vs 125 (26), p=0.07] was borderline higher in those without BRONJ. Conclusion the incidence of BRONJ remains high at 12% after a median of 5 years of BP use. Dental extraction remains the most significant risk factor for BRONJ. The salivary cytokine repertoire suggests M1 macrophage polarization (recently reported by Zhang et, Clin Cancer Res 2013), in response to injury. The low levels of VEGF and TGF in the serum in response to injury further impair the mucosal healing. Time points 1. Baseline, 2. Midpoint (6-9 months), 3. End of study (12-18 months) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2453-2453
Author(s):  
Susana Brito dos Santos ◽  
Mark C. Allenby ◽  
Athanasios Mantalaris ◽  
Nicki Panoskaltsis

Abstract Reproduction of dynamic physiologic erythropoiesis in vitro requires a three-dimensional (3D) architecture, erythroblast-macrophage interactions and cytokines such as erythropoietin (EPO). The role of oxygen concentration gradients in this process is unclear. We have created a 3D bone marrow (BM) biomimicry using collagen-coated polyurethane scaffolds (5mm3) to expand cord blood mononuclear cells (CBMNCs) in a cytokine-free environment for 28 days (D). Addition of EPO to this system induces mature erythropoiesis. We hypothesised that physiologic concentrations of cytokines - stem cell factor (SCF) / EPO - and a hypoxia (H)/normoxia (N) schedule to mimic BM oxygen gradients would enhance erythropoiesis. CBMNCs were seeded (4x106 cells/scaffold) in 3D serum-free cultures supplemented with 10ng/mL SCF (D0-D28), and 100mU/mL EPO (D7-D28), with medium exchange every 3D. Three conditions were compared: N (20%), H (5%) and 2-step oxygenation HN (H D0-D7 and N thereafter). Erythroid maturation was monitored weekly by flow cytometry (CD45/CD71/CD235a) both in situ (i.e., in scaffolds) and in supernatant (S/N) cells. D0-7 H was more efficient in early induction of CD235a in the absence of exogenous EPO (H 13% vs N 8% CD45loCD71+CD235alo cells, p<0.05). This maturation profile was also observed in D10 S/N cells, in which CD45loCD71+CD235a+ cells were proportionately more in H (30%) and HN (27%) than in N (16%, p<0.05). By D14, N and HN stimulated the appearance of CD45-CD71+CD235a+ cells, whereas H maintained the CD45loCD71+CD235a-/lo phenotype. By D21, a CD45-CD71+CD235a+ mature population was clearly distinguished in all conditions, most notably in N (16%) and HN (21%) vs H (9%). At D28, more mature CD45-CD71loCD235a+ cells were observed in normoxia conditions, N 3% and HN 4%, vs H 0.3%. A renewed population of erythroid progenitors was also evident at this time (H 62%, N 51% and HN 46% CD45loCD71lo/+CD235a- cells). In order to assess the impact of H and N on erythroid gene transcription, we evaluated erythroid signatures by qRT-PCR. GATA-1 expression was detected from D7, highest for H at D14 (p<0.05), and decreased thereafter. GATA-2 expression was up-regulated only at D28, in particular in N (p<0.05), and correlated with emerging erythroid progenitors identified at this stage. At D14, EPOR expression was maximal, especially in HN (p<0.05), simultaneous with high pSTAT5 levels, suggesting activation of EPOR signalling. Also at D14, H upregulated γ-globin (p<0.05). By Western Blot, only H and HN still produced γ-globin whereas β-globin expression was clearly detected in all conditions by D28. In situ production of cytokines was evaluated by cytometric bead array in the exhausted media. IL-6, G-CSF, GM-CSF, IL-1, TNF-α and IL-17 were detected at higher concentrations during the first 7 days, declining to undetectable thereafter. IL-21 was not detected at any point. IL-3 was detected from D13, with highest expression in H (p<0.05, D22). VEGF was also expressed after D7, highest in H (p<0.05, D16 & D19), concurrent with HIF-1α up-regulation observed at D7 and D14. TNF-α was produced with variable intensity from D4. These data suggested that D7-D14 was a crucial period for culture dynamics, in particular for H and HN, with up-regulation of erythroid transcription factors, EPOR signalling, and endogenous cytokine production. BFU-E and CFU-E also dominated the first 14 days of culture. Scanning electron microscopy at D17 and D25 revealed niche-like structures in situ, which expressed STRO-1, osteopontin and vimentin at D19 by confocal immunofluorescent microscopy, indicative of an endogenous stromal cell microenvironment. CD68+ cells were also detected at D19 in proximity to CD71+ cells suggesting formation of erythroblastic islands. In this 3D ex vivo biomimicry using near-physiologic cytokine and oxygen conditions, H induced initial erythroid commitment and established an early erythroid progenitor population. N was required at later maturational stages and enhanced the γ-globin to β-globin switch. We identified D7-D14 as a crucial timeframe in this system wherein endogenous cytokine production as well as up-regulation of GATA-1, EPOR and HIF-1α was observed. We propose that a combined HN schedule in this 3D BM biomimicy may enable a more robust and physiologic culture platform to study normal and abnormal erythroid differentiation. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 69 (7) ◽  
pp. 4351-4357 ◽  
Author(s):  
Garth L. J. Dixon ◽  
Phillippa J. Newton ◽  
Benjamin M. Chain ◽  
David Katz ◽  
Svein Rune Andersen ◽  
...  

ABSTRACT Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of in vitro-generated human DCs to a serogroup B strain of Neisseria meningitidis compared to an isogenic mutant lpxA strain totally deficient in LPS and purified LPS from the same strain. We show that the parent strain,lpxA mutant, and meningococcal LPS all induce DC maturation as measured by increased surface expression of costimulatory molecules and HLA class I and II molecules. Both the parent and lpxAstrains induced production of tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), and IL-6 in DCs, although the parent was the more potent stimulus. In contrast, high-level IL-12 production was only seen with the parent strain. Compared to intact bacteria, purified LPS was a very poor inducer of IL-1α, IL-6, and TNF-α production and induced no detectable IL-12. Addition of exogenous LPS to thelpxA strain only partially restored cytokine production and did not restore IL-12 production. These data show that non-LPS components of N. meningitidis induce DC maturation, but that LPS in the context of the intact bacterium is required for high-level cytokine production, especially that of IL-12. These findings may be useful in assessing components of N. meningitidis as potential vaccine candidates.


2012 ◽  
Vol 303 (7) ◽  
pp. L608-L616 ◽  
Author(s):  
Huy A. Nguyen ◽  
Murugesan V. S. Rajaram ◽  
Douglas A. Meyer ◽  
Larry S. Schlesinger

Alveolar macrophages (AMs) are exposed to frequent challenges from inhaled particulates and microbes and function as a first line of defense with a highly regulated immune response because of their unique biology as prototypic alternatively activated macrophages. Lung collectins, particularly surfactant protein A (SP-A), contribute to this activation state by fine-tuning the macrophage inflammatory response. During short-term (10 min–2 h) exposure, SP-A's regulation of human macrophage responses occurs through decreased activity of kinases required for proinflammatory cytokine production. However, AMs are continuously exposed to surfactant, and the biochemical pathways underlying long-term reduction of proinflammatory cytokine activity are not known. We investigated the molecular mechanism(s) underlying SP-A- and surfactant lipid-mediated suppression of proinflammatory cytokine production in response to Toll-like receptor (TLR) 4 (TLR4) activation over longer time periods. We found that exposure of human macrophages to SP-A for 6–24 h upregulates expression of IL-1 receptor-associated kinase M (IRAK-M), a negative regulator of TLR-mediated NF-κB activation. Exposure to Survanta, a natural bovine lung extract lacking SP-A, also enhances IRAK-M expression, but at lower magnitude and for a shorter duration than SP-A. Surfactant-mediated upregulation of IRAK-M in macrophages suppresses TLR4-mediated TNF-α and IL-6 production in response to LPS, and IRAK-M knockdown by small interfering RNA reverses this suppression. In contrast to TNF-α and IL-6, the surfactant components upregulate LPS-mediated immunoregulatory IL-10 production, an effect reversed by IRAK-M knockdown. In conclusion, these data identify an important signaling regulator in human macrophages that is used by surfactant to control the long-term alveolar inflammatory response, i.e., enhanced IRAK-M activity.


Sign in / Sign up

Export Citation Format

Share Document