Mechanism Study of Matrix Metalloproteinase 13 Effects on Osteoclast Activation and Lytic Bone Lesions in Multiple Myeloma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3009-3009
Author(s):  
Jing Fu ◽  
Shirong Li ◽  
G. David Roodman ◽  
Markus Mapara ◽  
Stephen J. Weiss ◽  
...  

Abstract Background : We have recently shown that Matrix metalloproteinase-13 (MMP-13) is highly expressed in human multiple myeloma (MM) cells and MMP-13 increases osteoclast (OCL) fusion and bone resorption independently of its metalloproteinase activity. In a mouse model of MM bone disease, knockdown (KD) of MMP-13 in MM cells inhibited development of bone lytic lesions, suggesting that MMP-13 is a potential therapeutic target for the treatment of MM bone disease (MMBD). However, the effects of MMP-13 on the MM bone marrow (BM) niche and underlying mechanism by which MMP-13 induces OCL fusion remains undefined. Methods and Results: To delineate the effects of MMP-13 on MM BM microenvironment, we investigated the effects of MMP-13 on cell proliferation and differentiation of pre-OCL, pre-osteoblast and MM cells. WT or Mmp-13-/- mouse CD11b+ BM cells were cultured with or without MMP-13 for 3 days and pre-OCL proliferation was evaluated by WST-1 assay. Neither MMP-13 treatment nor Mmp-13 deficiency affected pre-OCL proliferation, indicating MMP-13 induces OCL activation rather by promoting cell fusion than by affecting cell proliferation. To test the effects of MMP-13 on osteoblast (OB) differentiation and mineralization, mouse pre-OB cell line MC3T3-E1 and primary pre-OB cells from WT or Mmp-13-/- mice BM were cultured with or without MMP-13 for 7-14d. Neither exogenous MMP-13 nor Mmp-13 knockout affected OB differentiation or mineralization in vitro. Consistent with the in vitro observation, our Rag2-/- mouse 5TGM1 MMBD model provided in vivo evidence that knockdown of MMP-13 in MM cells does not affect MM induced OB inhibition or impairment of bone formation. Further, the effects of MMP-13 on MM cell proliferation were also assessed both in vitro and in vivo. Treatment of human MM cell lines RPMI-8266, OPM2 and MM.1S, as well as mouse MM cell line 5TGM1 with MMP-13 for up to 3 days did not induce in vitro cell proliferation. Similarly, MM cell sensitivity against anti-MM agents bortezomib and pomalidomide was not affected by MMP-13 in vitro. But, MMP-13 KD in mouse 5TGM1 MM cell line caused significantly less in vivo tumor burden in Rag2-/- intratibial MMBD model compared to 5TGM1 empty vector control cells, which we speculate occurs as a consequence of effects secondary to decreased OCL activation within the bone microenvironment following MMP-13 silencing. Our previous experiments showed that MMP-13 induces OCL fusion independent of its enzymatic activity, however the underlying mechanism is unknown. To further analyze the mechanism of action immunofluorescence staining and cell fraction-immunoblotting assay demonstrated that extracellular MMP-13 undergoes cell surface binding and subsequent active intracellular translocation into the perinuclear area, further supporting the enzymatic activity independent mechanism of MMP-13 on OCL induction. Furthermore, analysis of MMP-13-induced signaling pathways mediating osteoclastogenesis revealed that MMP-13 activates multiple cell signaling pathways including MAPK, PI3K and NF-kappaB independent of its enzymatic activity. Interestingly, the noncanonical NF-kappaB pathway is selectively activated by either MMP-13 WT or an E223A catalytically-inactive mutant, but not any by any other MMPs or MMP-13 truncated non-functional mutants, indicating that signaling through the noncanonical NF-kappaB pathway in OCL is specific for MMP-13 and may play a role in MMP-13-driven OCL fusion. Further studies are underway to screen for MMP-13 receptors and binding partners in an effort to delineate the processes underlying MMP-13 signaling. Conclusion: Our results demonstrate that MM produced MMP-13 induces OCL activation and bone resorption without affecting OB inhibition and bone formation impairment as well as anti-neoplastic response of MM cells. MMP-13 silencing in MM protects bone structure, and inhibits MM progression in vivo, which may be secondary to decreased OCL activation. MMP-13 specifically acts on OCL fusion. Signaling study showed noncanonical NF-kappaB signaling is selectively activated by MMP-13 independently of its enzymatic activity, and may be critical for MMP-13-induced OCL fusion and activation. Further screening the potential cellular receptor and intracellular transportation mechanism of MMP-13 in OCL is ongoing. Disclosures Roodman: Amgen: Consultancy; Eli Lilly: Research Funding. Lentzsch:Axiom: Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2208-2208
Author(s):  
William Senapedis ◽  
Ryan George ◽  
Dilara McCauley ◽  
Joel Ellis ◽  
Marsha Crochiere ◽  
...  

Abstract Introduction: Many hematological cancers have been successfully treated through identification of specialized targets in each specific tumor subtype (e.g. BTK inhibition in NHL or proteasome inhibition in multiple myeloma). The p21-Activated Kinase 4 (PAK4) is critical to cellular signaling and may represent a new target for therapy in many hematologic malignancies. PAK4 is a member of the PAK family of proteins that regulate cell survival, cell division and apoptosis. The six members of the PAK family are divided into two groups; Group I (PAK1, 2, 3) and Group II (PAK4, 5, 6), based upon their sequence homology and regulatory mechanisms. PAK4 is a member of the group II family of PAKs and is amplified or mutated in many cancer types. PAK4 is also a key downstream effector of the K-Ras pathway. Methods: Flow cytometry and CellTiter AQueous One (MTS) assays were used to determine compound effects on cell cycle distribution, proliferation and viability. Immunoblots were used to measure effects of compounds on protein steady state levels and phosphorylation. The T-cell ALL cell line, MOLT-4, and the mantle cell lymphoma cell line, Z-138, were used in xenograft models in mice to test the in vivo efficacy of these compounds. Results: We have identified selective, orally bioavailable, small molecule PAK4 allosteric modulators {PAMs; e.g. KPT-8752 (mw: 585.6), KPT-9274 (mw: 610.6), and KPT-9331 (mw: 628.6)} which demonstrated selective anti-tumor activity in a variety of hematological cancer cell lines (IC50 values = 0.005 – 1 mM). Treatment of cancer cells with these small molecules resulted in the reduction of PAK4 steady state levels and reduced phosphorylation of key growth signaling proteins such as Akt, β-catenin, cofilin, p21, and cyclin D1. There was a measurable increase in phospho-AMPK indicative of autophagy and stress. These allosteric modulators induced apoptosis through the activation of caspases 3 and 8 and subsequent cleavage of PARP. In MOLT-4 and Z-138 xenograft mouse models, daily treatment with oral PAMs resulted in near elimination of small (100 mm3) and large (800 mm3) tumors in the absence of any clinical signs of toxicity within the animals. Additional cell line and primary tumor models are currently being explored. Conclusions: PAK4 represents a novel anti-cancer target as a major downstream effector of the Ras oncogene. We have identified selective, orally-bioavailable small molecule PAK4 allosteric modulators which induce potent cytotoxicity in multiple leukemia and lymphoma cell lines with minimal toxicity to normal cell in vitro and clear anti-tumor activity with excellent tolerability in in vivo models of hematological cancers. These compounds inactivate PAK4 by directly inducing PAK4 destabilization. This represents a novel mechanism of the protein kinase inactivation involving degradation of PAK4 rather than direct inhibition of the kinase activity. Based on the in vitro and in vivo activity, these PAK4 allosteric modulators show promising results for the treatment of a wide variety of hematological cancers. Disclosures Senapedis: Karyopharm: Employment. George:Karyopharm: Employment. McCauley:Karyopharm Therapeutics: Employment, Equity Ownership. Ellis:Karyopharm: Employment. Crochiere:Karyopharm: Employment. Savona:Karyopharm: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees. Shacham:Karyopharm Therapeutics: Employment. Landesman:Karyopharm Therapeutics: Employment. Baloglu:Karyopharm: Employment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 473-473 ◽  
Author(s):  
Friederike Pastore ◽  
Neha Bhagwat ◽  
Aishwarya Krishnan ◽  
Alessandro Pastore ◽  
Bing Li ◽  
...  

Dysregulation of the protein arginine methyltransferase, PRMT5, occurs in a variety of malignancies and is associated with increased cancer cell proliferation. We investigated the role of PRMT5 in MPN pathogenesis through use of C220, a potent and selective small molecule PRMT5 inhibitor, and aimed to elucidate key PRMT5 targets contributing to the maintenance of MPN cells. We found that PRMT5 is overexpressed in MPN, most highly in PV. C220 dose-dependently reduced the proliferation of MPN cell lines and BaF3 cells expressing JAK2V617F in vitro. Human CD34+ cells from PV/PMF patients showed a high degree of sensitivity to C220 ex vivo. Consistent with the in vitrostudies, C220 treatment of SET2 xenografts in vivoled to a 71% reduction of median tumor volume, greater than that observed with JAK inhibition (59%). We assessed the efficacy of C220 in Jak2V617F- and MPLW515L-driven murine MPN models.In the conditional Jak2V617Fmodel of PV, mice treated with C220 displayed significant lower hematocrits (median 50.1% vs. 77.4 %, p<0.0001), WBC (median 4.5 K/µl vs. 16.9 K/µl, p<0.0001), reticulocytes (median 73 K/µl vs. 1522 K/µl, p<0.0001) and splenomegaly (median weight 68 mg vs. 270 mg, p<0.0001) compared to vehicle treatment. CD105+CD150- progenitors, committed erythroid progenitors (Pre-CFU-E), MEP, CD71-Ter119+ pro-erythroblasts and CD71+/Ter119+ erythroblasts were significantly decreased with C220 treatment [15.7% (p<0.0001), 36% (p=0.0004), 58% (p=0.01), 10% (p<0.0001) and 11% (p<0.0001), respectively, relative to vehicle]. In the MPLW515Ladoptive transfer model of ET/MF, C220 attenuated leukocytosis (WBC 11.1 K/µl vs. 155.3 K/µl, p=0.023), splenomegaly (136 mg vs. 423 mg, p=0.003), hepatomegaly (1118 mg vs. 1677 mg, p=0.004), and BM fibrosis (reticulin score 0.5 vs. 2+). C220 significantly reduced serum cytokines in the Jak2V617F(Eotaxin, GM-CSF, IL-12p40, LIX, KC, MCP1, MIP1a, MIP-2, M-CSF, RANTES, IP-10, IL-1b) and MPLW515L(MIP1b, TNF- alpha, RANTES, IP-10 and IL-1b) model consistent with inhibition of systemic inflammation characteristic of MPN. We next assessed the efficacy of combined PRMT5 and JAK inhibition. Dual targeting of JAK and PRMT5 displayed additive effects on SET2 cell proliferation in vitro and was superior to monotherapy with either agent in vivo. In the Jak2V617Fmodel, dual JAK/PRMT5 inhibition further reduced key features such as splenomegaly (median weight 39 mg vs. 68 mg or 127 mg, p=0.0004 and p<0.0001), elevated hematocrit (median 41.1% vs. 50.1% or 85.1%, p=0.0089 and p=0.0009), WBC (median 2.1 K/µl vs. 4.5 K/µl or 7.4 K/µl, p=0.0015 and p<0.0001) and led to a significant decrease in erythroid progenitor populations compared to PRMT5 or JAK inhibitor monotherapy. Dual JAK/PRMT5 inhibition showed increased efficacy in the MPLW515L model with more significant suppression of leukocytosis (median WBC 3.1 K/µl vs. 176.7 K/µl, p=0.0436), splenomegaly (median weight 117 mg vs. 438 mg, p=0.0062) and hepatomegaly (median weight 1105 mg vs. 1573 mg, p=0.0188). To further understand the mechanism by which C220 leads to therapeutic efficacy in MPN, we performed RNA-seq in sorted MEP from the Jak2V617FBMT model and from SET2 xenografts after vehicle or C220 in vivotherapy. GSEA revealed E2F targets as one of the major gene sets down regulated upon treatment with C220. Consistent with the potent suppression of E2F1 target gene expression in vivo, we found that E2F1 and PRMT5 physically interact in JAK2-mutant MPN cells. Moreover, PRMT5 inhibition altered the methylation status of E2F1, leading to reduced expression of E2F1 downstream targets, including genes involved in cell cycle and DNA damage repair. Functional investigation of key downstream targets is ongoing. Our data provide evidence that PRMT5 is a credentialed therapeutic target in MPN, alone and in combination with JAK inhibition. Moreover, the therapeutic effects of PRMT5 inhibition in MPN include attenuated expression of E2F targets, which our data suggests is mediated by PRMT5 methylation of E2F1. These data demonstrate a novel link between PRMT5, E2F1 gene regulatory function, and the survival of MPN cells and provide a strong mechanism-based rationale for therapeutic studies of PRMT5 inhibitors in MPN. Based on these studies and others, PRT543, a novel and selective PRMT5 inhibitor, is currently being evaluated in a Phase I clinical trial in advanced cancers, including myelofibrosis (NCT03886831). Disclosures Bhagwat: Prelude Therapeutics: Employment. Viny:Hematology News: Membership on an entity's Board of Directors or advisory committees; Mission Bio: Other: Sponsored travel. Grego:Prelude Therapeutics: Employment. Mehta:Prelude Therapeutics: Employment. Scherle:Prelude Therapeutics: Employment. Vaddi:Prelude Therapeutics: Employment. Levine:Novartis: Consultancy; Roche: Consultancy, Research Funding; Imago Biosciences: Membership on an entity's Board of Directors or advisory committees; Prelude Therapeutics: Research Funding; Celgene: Consultancy, Research Funding; Isoplexis: Membership on an entity's Board of Directors or advisory committees; C4 Therapeutics: Membership on an entity's Board of Directors or advisory committees; Loxo: Membership on an entity's Board of Directors or advisory committees; Qiagen: Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy; Lilly: Honoraria; Amgen: Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1329-1329
Author(s):  
Jessica Leonard ◽  
Joelle Rowley ◽  
Brandon Hayes-Lattin ◽  
Jeffrey W. Tyner ◽  
Marc Loriaux ◽  
...  

Abstract Introduction: Treatment of adult Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) remains a challenge. While the addition of the targeted tyrosine kinase inhibitors (TKI) to standard cytotoxic therapy has greatly improved upfront treatment, treatment related mortality in older adults remains high. A novel induction regimen combines the targeted dual Abl/Src TKI Dasatinib (Sprycel, BMS) with a corticosteroid. After the first 21 days of induction the corticosteroids are tapered due to significant toxicities, particularly in older adults. Unfortunately, remaining on TKI monotherapy renders patients susceptible to the development of TKI resistance and thus identifying targeted agents that could enhance the activity of TKIs is urgently needed. Recently a novel and selective inhibitor of BCL-2, ABT-199 (Venetoclax, AbbVie) has shown impressive activity against other lymphoid malignancies including CLL and NHL. Here we describe the pre-clinical and in vivo efficacy of ABT-199 in combination with dasatinib in Ph+ ALL and propose its potential use in future clinical trials. Methods: Drug efficacy in vitro was determined using the Ph+ ALL cell line SupB15, primary Ph+ ALL sample (12-149), the dasatinib sensitive Pre-B ALL cell line RCH and the CML cell line K562. Cells were treated with dasatinib, ABT199 or in combination for 72 hours. Cell viability was assessed with the colorimetric MTS assay and apoptosis was assessed with annexin V staining. Expression of the BCL family proteins BCL-2 and MCL-1 were assessed via immunoblot. Immunodeficient NSG mice were injected with 12-149, then one week later treated with vehicle, 5 mg/kg dasatinib, 5 mg/kg ABT-199, or the combination daily for 5 days each week. Peripheral blood was obtained every 1-2 weeks to assess for engraftment as defined by the presence of >10% human CD45+ cells in the peripheral blood. Once engrafted, mice were euthanized and examined. Mononuclear cells were extracted and assessed for BCL2 and MCL1 expression. Statistical methods were performed using Calcusyn and PRISM. Results: Susceptibility to BCL2 inhibition: Of the dasatinib sensitive cells tested, SupB15 and 12-149 cells were susceptible to ABT-199 while RCH and K562 cells were not. The ALL cells expressed BCL-2 while the CML cell line expressed BCLx. SupB15 expressed low levels of the antiapoptotic protein MCL1 while RCH cells had relatively higher levels. siRNA of MCL-1 rendered the RCH cells sensitive to inhibition by ABT-199. In SupB15 cells, treatment with ABT-199 alone led to upregulation of MCL-1 at 24h which was prevented by the combination of dasatinib + ABT199. Synergy in Ph+ ALL: The calculated IC50 of dasatinib and ABT199 in SupB15 were 8.8nM and 5.9nM, respectively. The IC50 of equimolar combination was 0.42nM, and synergistic with combination index (CI) values between 0.15 and 0.49. Primary Ph+ ALL xenograft cells showed a similar pattern of synergy to the dasatinib + ABT199 combination. Combination treatment also greatly increased apoptosis as measured by Annexin V staining. Xenograft Studies: Animals were treated with a ten-fold lower dose of dasatinib and ABT199 from prior published data. There was no significant difference in time to engraftment or disease burden between vehicle or single agent ABT-199. In contrast, less than one half of the animals treated with dasatinib engrafted by 90 days while none of the animals treated with both dasatinib and ABT-199 engrafted. Most intriguing was the decrease in disease burden as measured by splenic size in the combination group compared to all other groups (P<0.0001, one-way ANOVA). Analysis of BCL-2 family proteins from mononuclear cells isolated from untreated animals confirmed upregulation of BCL-2 and relatively low levels of MCL-1. Animals treated with ABT-199 had greatly upregulated levels of MCL-1, while those treated with dasatinib or the combination did not. Conclusions: The combination of ABT-199 with dasatinib synergistically targets Ph+ ALL cells both in vitro and in vivo, laying the foundation for further evaluation in vivo for adult Ph+ ALL. As demonstrated by others, malignancies that are particularly susceptible to BCL targeting are those which display high BCL-2 expression and a low MCL-1: BCL-2 ratio. Combined targeted therapies may offer the potential for greater and longer responses without the morbidity associated with cytotoxic chemotherapy, particularly in older adults. Disclosures Tyner: Aptose Biosciences: Research Funding; Janssen Pharmaceuticals: Research Funding; Incyte: Research Funding; Array Biopharma: Research Funding; Constellation Pharmaceuticals: Research Funding. Druker:Cylene Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Oregon Health & Science University: Patents & Royalties; McGraw Hill: Patents & Royalties; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics, Inc (formerly Lorus): Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Millipore: Patents & Royalties; Fred Hutchinson Cancer Research Center: Research Funding; Novartis Pharmaceuticals: Research Funding; Sage Bionetworks: Research Funding; MolecularMD: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; ARIAD: Research Funding; Henry Stewart Talks: Patents & Royalties; Leukemia & Lymphoma Society: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncotide Pharmaceuticals: Research Funding; CTI Biosciences: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Roche TCRC, Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees; Blueprint Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy.


2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2095-2095
Author(s):  
Zezhou Wang ◽  
Jaehyun Choi ◽  
Peter Dove ◽  
Chunlei Wang ◽  
Aaron D. Schimmer ◽  
...  

Abstract Although recent advances in the development of multiple myeloma (MM) therapies such as proteasome inhibitors and immunomodulatory agents have improved patient outcomes, MM remains incurable. Additional therapeutic agents with high efficacy, low toxicity and the convenience of oral administration are in high demand. BET inhibitors, such as JQ-1, have been considered as potential therapeutic agents for MM. In the present study, we report that TTI-281, an orally bioavailable BET inhibitor, displays anti-MM activity with a low toxicity profile in preclinical studies. First, TTI-281 was tested for binding and anti-tumor activity in vitro. BROMOscan and AlphaScreen assays demonstrated that TTI-281 bound to bromodomains of BRD2/BRD3/BRD4 with Kd values less than 10 nM. In MTS assays, TTI-281 inhibited the growth of MM cell lines (MM.1s, NCIH929, and RPMI-8826) with cell growth-inhibition (IC50) values less than 300 nM. Next, in vitro ADME screening and in vivo PK studies were conducted. Permeability assays using murine gastrointestinal epithelial cells indicated that TTI-281 had good permeability with little efflux liability (efflux ratio <1), suggesting favorable properties for oral absorption. Indeed, TTI-281 displayed excellent oral bioavailability in both mice and rats (93.1% and 91.8%, respectively). In addition, TTI-281 did not interfere with the metabolism of representative CYP isozyme substrates at concentrations up to 50 μM in pooled human liver microsomes. Data also suggested minimal potential for drug-drug interactions, allowing for the possible combination with first-line therapy to improve therapeutic and survival outcomes. Finally, TTI-281 was tested for anti-myeloma efficacy and tolerability in vivo. NOD-SCID mice (n=10/group) subcutaneously engrafted with the human myeloma cell line MM.1S were treated orally once daily for 21 days with different doses of TTI-281, vehicle control or the benchmark drug carfilzomib. TTI-281 reduced tumor growth in a dose-dependent manner in this MM xenograft model. At 30 mg/kg/day, TTI-281 led to a statistically significant decrease in tumor growth compared with the vehicle control and carfilzomib (reduced tumor volume: 67% after TTI-281 treatment vs 33% after carfilzomib treatment, p<0.0003). Furthermore, TTI-281 treatment was well tolerated, with no effect on body weight or other obvious toxicity. In summary, our preclinical data suggest that the orally available BET inhibitor TTI-281 has an excellent efficacy and safety profile, highlighting its potential as a promising drug candidate for myeloma therapy. Disclosures Wang: Trillium Therapeutics: Employment, Patents & Royalties. Choi:Trillium Therapeutics: Employment. Dove:Trillium Therapeutics: Employment, Patents & Royalties. Wang:Trillium Therapeutics: Employment. Schimmer:Novartis: Honoraria. Petrova:Trillium Therapeutics Inc: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Uger:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Slassi:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Weixing Dai ◽  
Xianke Meng ◽  
Shaobo Mo ◽  
Wenqiang Xiang ◽  
Ye Xu ◽  
...  

Abstract Background Low expression of FOXE1, a member of Forkhead box (FOX) transcription factor family that plays vital roles in cancers, contributes to poor prognosis of colorectal cancer (CRC) patients. However, the underlying mechanism remains unclear. Materials and methods The effects of FOXE1 on the growth of colon cancer cells and the expression of glycolytic enzymes were investigated in vitro and in vivo. Molecular biological experiments were used to reveal the underlying mechanisms of altered aerobic glycolysis. CRC tissue specimens were used to determine the clinical association of ectopic metabolism caused by dysregulated FOXE1. Results FOXE1 is highly expressed in normal colon tissues compared with cancer tissues and low expression of FOXE1 is significantly associated with poor prognosis of CRC patients. Silencing FOXE1 in CRC cell lines dramatically enhanced cell proliferation and colony formation and promoted glucose consumption and lactate production, while enforced expression of FOXE1 manifested the opposite effects. Mechanistically, FOXE1 bound directly to the promoter region of HK2 and negatively regulated its transcription. Furthermore, the expression of FOXE1 in CRC tissues was negatively correlated with that of HK2. Conclusion FOXE1 functions as a critical tumor suppressor in regulating tumor growth and glycolysis via suppressing HK2 in CRC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1453-1453 ◽  
Author(s):  
Parvathi Ranganathan ◽  
Xueyan Yu ◽  
Jessica Hofstetter ◽  
Ramasamy Santhanam ◽  
Sharon Schacham ◽  
...  

Abstract AML is a clonal hematopoietic disorder characterized by genetic and epigenetic alterations. The prognosis of AML is poor highlighting the urgent need for novel therapeutic approaches. Targeting aberrant DNA hypermethylation by using hypomethylating drugs such as decitabine has been recently investigated in AML. Our group reported a relatively effective (47% complete response) single agent decitabine treatment schedule for older AML patients. These results suggested the opportunity to capitalize on this relatively effective and non-toxic treatment by incorporating this compound into novel molecularly targeted approaches. Recent data indicate that targeting nuclear exporter proteins is a novel therapeutic strategy to overcome cancer. In particular, CRM1/XPO1 is the only nuclear exporter involved in the active transport of the majority of tumor suppressor proteins (TSP) [e.g. p53 and FOX03A] out of the nucleus resulting in their inactivation. We recently reported the anti-leukemic activity of oral SINE CRM1/XPO1 Antagonists in AML. SINEs displayed potent anti-proliferative properties, induced apoptosis, cell-cycle arrest and myeloid differentiation in AML cell lines and patient blasts. In addition, treatment of leukemic mice with oral SINE significantly prolongs their survival. By crossing the lists of genes known to be regulated by DNA methylation in AML with the ones whose nuclear transport is XPO1 dependent, we identified important TSPs such as FOXO3A and p21. Here we hypothesize that treatment of AML cells with decitabine will increase the transcription and expression of a subset of TSPs (including FOX03A and p21) whose nuclear anti-leukemic effects could be enhanced by blocking their XPO1 mediated nuclear export using the clinical stage oral SINE (Selinexor). Thus, we expect that the sequential treatment of decitabine followed by Selinexor will be more effective than each drug alone. To confirm this hypothesis first we treated the AML line OCI-AML3 cells with decitabine (500nM) overnight (ovn) followed by Selinexor (200nM, 2 fold lower than IC50) for an additional 24 hours (hrs) and measured cell proliferation using WST-1 assay. Controls include: 1) DMSO ovn +DMSO 24 hours, 2) Selinexor ovn +selinexor 24 hours (200 nM) and 3) decitabine ovn + decitabine 24 hrs (500nM). AML cells that were treated first with decitabine followed by Selinexor exhibited a higher cytotoxicity (absorbance (Abs) 0.7) than cells treated with either decitabine (Abs 1.36), Selinexor (Abs 1, p=0.006) or DMSO (Abs 1.7). Similar results were observed with the MV4-11 cell line. Next we measured the candidate TSPs (FOX03A and p21) mRNA and protein expression in OCI-AML-3 and MV4-11 cell lines after 24 hrs of decitabine treatment. We found a significant up-regulation of p21 in decitabine versus DMSO treated cells (MV4-11, Fold change (FC) 4.67±1.4; OCI-AML3, FC 3.98±1.19, p<0.05). We also detected a modest up-regulation of FOXO3A in both cell lines treated with decitabine when compared to the DMSO controls (MV4-11, FC 2.56±0.74 and OCI-AML3, FC 1.5±0.23, p<0.05). These results were confirmed also at the protein level by using western blot. Next, we asked whether ectopic up-regulation of p21 (mimicking decitabine effects) in OCI-AML3 cells could re-capitulate the decitabine enhancing antileukemic effects of Selinexor. Overexpression of p21 followed by Selinexor (200nM) for 24 hrs resulted in a larger decrease of cell proliferation (Abs 0.5) with respect to controls (Abs 0.7, p<0.05) using the WST assay. Similar results were observed for the MV4-11 cell line. Finally, we tested the efficacy of the sequential decitabine–Selinexor in vivo using the MV4-11 xenograft model. Treatment began one week after leukemic cell inoculation in 4 different cohorts; 1) Vehicle, 2) decitabine i.p. twice weekly (BIW) (0.4mg/kg); 3) Selinexor BIW (20mg/kg by oral gavage) and 4) decitabine BIW i.p (0.4 mg/kg) followed by Selinexor (10 mg/kg BIW). We found no difference in median survival time (MST) between vehicle and decitabine only treated mice. As expected, Selinexor alone treated mice have significantly improved MST at 36.5 days vs. 28.5 days, vehicle, p=<0.01). Most importantly, the sequential treatment of decitabine followed by Selinexor significantly improved MST compared to Selinexor alone 47 vs 36.5, p=0.008). These pre-clinical results hold great promise for the use of this combination in human clinical trials in AML. Disclosures: Schacham: Karyopharm: Membership on an entity’s Board of Directors or advisory committees. Kauffman:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. Garzon:Karyopharm: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2396-2396
Author(s):  
Yongwei Zheng ◽  
Alexander W Wang ◽  
Mei Yu ◽  
Anand Padmanabhan ◽  
Benjamin E Tourdot ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT) is an immune-mediated disorder that can cause fatal arterial or venous thrombosis/thromboembolism. Immune complexes consisting of heparin, platelet factor 4 (PF4) and PF4/heparin-reactive antibodies are central to the pathogenesis of HIT. However, heparin, a glycosoaminoglycan, and PF4 are normal body constituents and it is as yet unclear what triggers the initial induction of pathogenic antibodies. Here we described detection of B cells among peripheral blood mononuclear cells (PBMCs) from each of 9 healthy adults that produced PF4/heparin-specific IgM antibodies following in vitro stimulation with ubiquitous pro-inflammatory molecules containing unmethylated CpG dinucleotides derived from bacterial and viral DNA. PF4/heparin-specific IgM-generating B cells were present at a frequency of at least 0.03 to 1 per thousand B cells present in the PBMC population. Similarly, splenic B cells isolated from unmanipulated wild-type mice consistently produced PF4/heparin-reactive antibodies following in vitro stimulation with CpG. In addition, wild-type mice produced PF4/heparin-reactive antibodies upon in vivo challenge with CpG whereas unchallenged wild-type mice did not. These findings demonstrate that both humans and mice possess pre-existing, inactive and tolerant PF4/heparin-specific B cells. We suggest that tolerance can be broken by a strong inflammatory stimulus, leading to activation of these B cells and production of antibodies that recognize PF4/heparin in vitro and in vivo. Consistent with this concept, mice lacking protein kinase Cd (PKCd), a signaling molecule of the B-cell survival factor BAFF (B-cell activation factor), that are known to have breakdown of B-cell tolerance to self-antigens, spontaneously produced anti-PF4/heparin antibodies in the absence of an inflammatory stimulus. Taken together, these findings demonstrate that breakdown of tolerance can lead to PF4/heparin-specific antibody production and that B-cell tolerance plays an important role in HIT pathogenesis. Disclosures: White II: Bayer: Membership on an entity’s Board of Directors or advisory committees; CSL-Behring: Membership on an entity’s Board of Directors or advisory committees; NIH: Membership on an entity’s Board of Directors or advisory committees; Asklepios: Membership on an entity’s Board of Directors or advisory committees; Wyeth: Membership on an entity’s Board of Directors or advisory committees; Entegrion: Membership on an entity’s Board of Directors or advisory committees; Biogen: Membership on an entity’s Board of Directors or advisory committees; Baxter: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2583-2583
Author(s):  
Charles C. Chu ◽  
Piers E.M. Patten ◽  
Thomas MacCarthy ◽  
Xiao-Jie Yan ◽  
Jacqueline C. Barrientos ◽  
...  

Abstract Ultra-deep sequencing has revolutionized our ability to acquire large amounts of genetic data. We have applied this technology towards understanding the mutational process in B-cell chronic lymphocytic leukemia (CLL), which may be a key to understanding CLL pathogenesis. Acquisition of new cytogenetic aberrations and gene mutations in the CLL clone is associated with worse patient outcome. CLL is not unique in this aspect, as new somatic mutations and DNA rearrangements are also found during the evolution of other solid and liquid tumors. In many of these, activation-induced deaminase (AID), an enzyme normally expressed in germinal center B lymphocytes to induce IGHV-D-J mutations and isotype class switch recombination, is abnormally expressed. Its mutational activity, acting outside of the Ig loci, is implicated in the evolution to more aggressive disease. In CLL, the detection of leukemic cells expressing AID ex vivo correlates with significantly shorter patient survival. To test if AID mutational activity is functional in CLL cells and therefore could contribute to CLL evolution, we analyzed mutations in IGHV-D-J, the preferred substrate for AID. Because the rate of AID-induced mutation is low and only a small percentage of CLL cells express AID ex vivo, we used ultra-deep sequencing to analyze CLL cells that were activated under conditions that simulate the CLL microenvironment. Specifically, CLL cells were activated (1) in vitro by simulating the provision of T-cell help or (2) in vivo after adoptive transfer into alymphoid recipient mice, which requires the presence of T-cells for CLL cell growth. Each of these conditions induce AID in a large fraction of CLL cells. To analyze IGHV-D-J mutations, the specific CLL clone IGHV was amplified from cDNA obtained on day 0 or from the activated CLL samples using IGHV family-specific and IGHM primers to enable subsequent comparison of IGHV-D-J with IGHM mutation frequencies. Three unmutated IGHV CLL (U-CLL) and 3 mutated IGHV (>2% compared to germline) CLL (M-CLL) samples were sequenced with the Roche 454 FLX system, resulting in a total of 1,367,522 sequence reads. After using the Roche 454 algorithm to trim sequence reads, they were prepared using custom R scripts that separated 5’ IGHV and 5’ IGHM primer sequences, aligned sequences to the CLL clone IGHV-D-J rearrangement, and removed poor quality (<20) sequences, insertions, and deletions. Beginning at the 5’ end, the script also extracted blocks of sequences of the same length for day 0 and activated samples, which are required for subsequent analyses. After these preparations, the resulting 724,855 sequence blocks were subjected to clonal analyses with custom R scripts. The dominant CLL clone accounted for 94.5% (684,691) of the sequences. Subclone sequences occurring more than once were extracted. After comparison to day 0, new subclones could be identified in all samples after activation (3.22 – 28.70 new subclones / read bp *106). To evaluate AID mutational characteristics in new subclones, SHMTool (http://scb.aecom.yu.edu/shmtool) was employed to calculate mutation frequencies in IGHV-D-J relative to the IGHM constant region, at AID mutation hotspot sites (GYW or WRC), at AID mutation coldspot sites (SYC or GRS), at C/G base pairs, and at error-prone DNA polymerase eta repair hotspot sites (WA or TW). To calculate statistical significance, we utilized a custom R script that used a bootstrap method to account for the large sample sizes provided by ultra-deep sequencing as well as to correct for differences in sequencing sample size. All samples showed an increase in IGHV-D-J versus IGHM mutations after T cell activation. Five of 6 cases showed an increase in AID hostpot mutation frequency. AID coldspot mutation frequency decreased in 3/6 CLL cases. Percent transition mutation at C/G sites was higher than random in 2/6 CLL cases, which correlated with low frequencies of DNA polymerase eta hotspot mutation. In the other 4/6 CLL cases, the lower percent transitions at C/G sites may reflect the contribution of error-prone DNA repair. In summary, we developed a method to analyze ultra-deep IGHV-D-J sequences that revealed AID mutational characteristics in both U-CLL and M-CLL cells after activation with T-cell help in vitro or in vivo. These data are consistent with the hypothesis that AID, perhaps along with error-prone DNA repair, creates new mutations leading to the evolution of aggressive CLL. Disclosures: Rai: Sanofi: Membership on an entity’s Board of Directors or advisory committees; GSK: Membership on an entity’s Board of Directors or advisory committees; Teva: Membership on an entity’s Board of Directors or advisory committees; Genentech: Membership on an entity’s Board of Directors or advisory committees; Celgene: Membership on an entity’s Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document