GNB1 K89M Drives TKI Resistance in ETV6-ABL1-Positive Leukemia

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 751-751
Author(s):  
Olga Zimmermannova ◽  
Eliska Doktorova ◽  
Jan Stuchly ◽  
Meritxell Alberich Jorda ◽  
Jiri Petrak ◽  
...  

Abstract Leukemias harboring ETV6-ABL1 fusion represent a rare prognostically unfavorable subgroup of hematological malignancies. To a great extent they share biological and clinical characteristics with more common BCR-ABL1+ leukemias. Both fusion genes encode constitutively activated aberrant tyrosine kinases which can be targeted by specific tyrosine kinase inhibitors (TKI). The efficiency of TKI to inhibit ETV6-ABL1 kinase activity was proven in vitro and substantiated their use in clinical practice. However, there is still a lack of knowledge on potential induction and mechanisms of TKI resistance in ETV6-ABL1+ malignancies. To address this issue we established a multi-TKI resistant ETV6-ABL1+ lymphoblastic cell line via a long term cultivation with TKI imatinib mesylate (IM) and investigated the mechanisms of the acquired TKI resistance. We excluded the most common mechanisms known from BCR-ABL1+ leukemias (kinase domain mutations, genomic amplification and enhanced kinase expression/activation) as causes of resistance in our model. Importantly, using shRNA mediated silencing we showed that unlike their sensitive counterparts, the resistant cells did not respond to the ETV6-ABL1 knockdown by growth suppression or cell death and, therefore, became independent on pro-survival signaling from the chimeric kinase. To further elucidate molecular mechanisms underlying the TKI resistance, we compared biological profiles of resistant and parental sensitive cells. Molecular changes potentially associated with the TKI resistance were analyzed via genomic (single nucleotide polymorphism array, whole exome sequencing), gene expression and proteomic profiling. We integrated data from all platforms and identified K89M mutation in GNB1 gene as the top candidate causative lesion. A mutation affecting the same GNB1 codon, K89E, was recently identified in a blastic plasmacytoid dendritic cell neoplasm by Yoda et al. (Nature Medicine, 2015) and was shown to result in the upregulation of PI3K/Akt/mTOR and MAPK pathways signaling. Interestingly, Yoda et al. also identified functionally similar mutations of GNB1 and GNB2 in several TKI-resistant primary malignancies including a single case with BCR-ABL1+ leukemia. In accordance with these findings we showed that unlike the parental sensitive cells, the resistant ETV6/ABL1+ cells were able to restore PI3K/Akt/mTOR and p44/MAPK signaling after IM treatment. To further confirm the key role of GNB1 K89M mutation in our TKI resistance model we transduced the parental sensitive ETV6/ABL1+ cell line with wild type (WT) GNB1, GNB1-K89M, GNB1-K89E or with empty vector, and studied the impact on TKI sensitivity and kinase signaling. While the cells transduced with WT-GNB1 or with empty vector remained sensitive to TKI, the cells transduced with mutated GNB1 (both K89E and K89M)became resistant to IM, nilotinib, dasatinib and ponatinib. Similarly, while the repeated application of IM resulted in cell growth arrest and cell death in the cells with WT-GNB1 and empty vector, the cells transduced with mutated GNB1 showed only subtle changes in proliferation and viability. Administration of IM resulted in the inhibition of ETV6-ABL1-mediated signaling in all cell lines as demonstrated by diminished phosphorylation of the ETV6-ABL1 direct substrate - CRKL adaptor protein. However, while the IM induced a prolonged inhibition of p44/MAPK and PI3K/Akt/mTOR pathway signaling in the cells with WT-GNB1 and with empty vector, the cells transduced by mutated GNB1 (both K89E and K89M) were able to restore activation of both pathways within 24 hours after IM treatment (similarly to the original multi-TKI resistant cell line). In summary, we showed that the long-term IM treatment of ETV6-ABL1+ leukemia resulted in a gain of TKI-resistance which was driven by the acquired GNB1 mutation activating pro-proliferative and pro-survival signaling, independent on the ETV6-ABL1 kinase activity. Importantly, leukemic cells with mutated GNB1 were resistant not only to IM, but also to the next generation TKI. The frequency of GNB1/GNB2 mutations in primary ETV6-ABL1+ and BCR-ABL1+ leukemias and its clinical relevance is to be determined in the study currently initiated within an international collaboration. Supported by grants GACR P302/12/G10 and GAUK 554214. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3365-3365
Author(s):  
Jean-Yves Metais ◽  
Ashley E. Dunfee ◽  
Rodrigo T. Calado ◽  
Cynthia E. Dunbar

Abstract We recently reported development of an acute myeloid leukemia in a rhesus macaque transplanted with autologous CD34+ cells transduced with a murine stem cell virus-derived replication defective retrovirus vector expressing only marker genes under control of the strong MCSV LTR. This animal had an unusual clonal reconstitution pattern the first year following transplant, with a single transduced myeloid progenitor cell clone accounting for up to 80% of then normal myelopoiesis (Kelly, 2005). The same vector-containing clone then transformed to AML five years following transplantation, and each tumor cell was shown to contain two vector insertions, one localized 20 kb upstream the CDw92 gene on chromosome 9, and the second localized in the first intron of BCL2A1 on chromosome 15 (Seggewiss, 2006), a gene in the anti-apoptotic BCL2 family not previously linked to myeloid leukemia. BCL2A1 was highly expressed in the tumor cells. This tumor was the first hematopoietic malignancy reported in a recipient of primitive cells transduced with a replication-incompetent vector containing only marker genes, and suggested that BCL2A1 could have potent effects on myeloid cell behavior. To investigate the impact of the BCL2A1 gene product on hematopoietic cells, we cloned the murine and human HA-tagged BCL2A1 cDNAs into lentivirus vectors and transduced the murine BaF3 hematopoietic cell line as a model to study the impact of expression of these proteins on hematopoiesis. We confirmed overexpression of the proteins in the producer cell line as well as in transduced cells by western blot using an anti-HA monoclonal antibody. BaF3 cell proliferation and survival are dependant on IL-3, and under IL-3 replete conditions overexpression of murine or human BCL2A1 did alter proliferation compared with untransduced cells or cells transduced with an empty vector. Removal of IL-3 from the cell culture media leads to rapid apoptosis of BaF3 cells, with cell cycle arrest in the G1 and an apoptotic subpopulation appearing within 24 hours of IL-3 removal. 45% untransduced or empty vector cells were apoptotic, and this fraction decreased to 30% and 15% respectively for BaF3 cells expressing murine or human BCL2A1. These results were confirmed by direct analysis of apoptosis. Only BaF3 cells over-expressing human BCL2A1 were still alive and arrested in G1 after 3 days of culture without IL-3. The murine BCL2A1 had similar but less striking effects. Gene expression analyses on the BaF3 cell populations are ongoing, to identify potential downstream targets of the BCL2A1 protein. The BCL2A1 and empty vectors were also utilized in murine bone marrow cell immortalization assay, previously utilized to identify genes impacting on the survival and expansion of primary myeloid progenitor cells (Du, 2005). In an initial set of experiments, clonal clonal expansion was obtained with marrow cells expressing murine (4 clones) and human (5 clones) BCL2A1 but not for empty vector or untransduced murine marrow. Mice have also been transplanted with primary bone marrow cells transduced with the BCL2A1 and control vectors, and are being followed for in vivo expansion of transduced clones and development of leukemia. In conclusion, we have confirmed the role of BCL2A1 as an anti-apoptotic protein, now in myeloid hematopoietic cells, and will continue to investigate the role of this gene product in hematopoiesis and leukemogenesis.


2014 ◽  
Vol 5 (10) ◽  
pp. e1444-e1444 ◽  
Author(s):  
I Karl ◽  
M Jossberger-Werner ◽  
N Schmidt ◽  
S Horn ◽  
M Goebeler ◽  
...  

Abstract The relevance of the adaptor protein TNF receptor-associated factor 2 (TRAF2) for signal transduction of the death receptor tumour necrosis factor receptor1 (TNFR1) is well-established. The role of TRAF2 for signalling by CD95 and the TNF-related apoptosis inducing ligand (TRAIL) DRs, however, is only poorly understood. Here, we observed that knockdown (KD) of TRAF2 sensitised keratinocytes for TRAIL- and CD95L-induced apoptosis. Interestingly, while cell death was fully blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) in control cells, TRAF2-depleted keratinocytes were only partly rescued from TRAIL- and CD95L-induced cell death. In line with the idea that the only partially protective effect of zVAD-fmk on TRAIL- and CD95L-treated TRAF2-depleted keratinocytes is due to the induction of necroptosis, combined treatment with zVAD-fmk and the receptor interacting protein 1 (RIP1) inhibitor necrostatin-1 fully rescued these cells. To better understand the impact of TRAF2 levels on RIP1- and RIP3-dependent necroptosis and RIP3-independent apoptosis, we performed experiments in HeLa cells that lack endogenous RIP3 and HeLa cells stably transfected with RIP3. HeLa cells, in which necroptosis has no role, were markedly sensitised to TRAIL-induced caspase-dependent apoptosis by TRAF2 KD. In RIP3-expressing HeLa transfectants, however, KD of TRAF2 also strongly sensitised for TRAIL-induced necroptosis. Noteworthy, priming of keratinocytes with soluble TWEAK, which depletes the cytosolic pool of TRAF2-containing protein complexes, resulted in strong sensitisation for TRAIL-induced necroptosis but had only a very limited effect on TRAIL-induced apoptosis. The necroptotic TRAIL response was not dependent on endogenously produced TNF and TNFR signalling, since blocking TNF by TNFR2-Fc or anti-TNFα had no effect on necroptosis induction. Taken together, we identified TRAF2 not only as a negative regulator of DR-induced apoptosis but in particular also as an antagonist of TRAIL- and CD95L-induced necroptosis.


2005 ◽  
Vol 69 (2) ◽  
pp. 353-356 ◽  
Author(s):  
Kenji OHGUCHI ◽  
Yukihiro AKAO ◽  
Kenji MATSUMOTO ◽  
Toshiyuki TANAKA ◽  
Tetsuro ITO ◽  
...  

2017 ◽  
Vol 8 ◽  
pp. 1307-1317 ◽  
Author(s):  
Kati Erdmann ◽  
Jessica Ringel ◽  
Silke Hampel ◽  
Manfred P Wirth ◽  
Susanne Fuessel

We have previously shown that carbon nanofibers (CNFs) and carbon nanotubes (CNTs) can sensitize prostate cancer (PCa) cells to platinum-based chemotherapeutics. In order to further verify this concept and to avoid a bias, the present study investigates the chemosensitizing potential of CNFs and CNTs to the conventional chemotherapeutics docetaxel (DTX) and mitomycin C (MMC), which have different molecular structures and mechanisms of action than platinum-based chemotherapeutics. DU-145 PCa cells were treated with DTX and MMC alone or in combination with the carbon nanomaterials. The impact of the monotreatments and the combinatory treatments on cellular function was then systematically analyzed by using different experimental approaches (viability, short-term and long-term proliferation, cell death rate). DTX and MMC alone reduced the viability of PCa cells to 94% and 68%, respectively, whereas a combined treatment with CNFs led to less than 30% remaining viable cells. Up to 17- and 7-fold higher DTX and MMC concentrations were needed in order to evoke a similar inhibition of viability as mediated by the combinatory treatments. In contrast, the dose of platinum-based chemotherapeutics could only be reduced by up to 3-fold by combination with carbon nanomaterials. Furthermore, combinatory treatments with CNFs led mostly to an additive inhibition of short- and long-term proliferation compared to the individual treatments. Also, higher cell death rates were observed in combinatory treatments than in monotreatments, e.g., a combination of MMC and CNFs more than doubled the cell death rate mediated by apoptosis. Combinations with CNTs showed a similar, but less pronounced impact on cellular functions. In summary, carbon nanomaterials in combination with DTX and MMC evoked additive to partly synergistic anti-tumor effects. CNFs and CNTs possess the ability to sensitize cancer cells to a wide range of structurally diverse chemotherapeutics and thus represent an interesting option for the development of multimodal cancer therapies. Co-administration of chemotherapeutics with carbon nanomaterials could result in a reduction of the chemotherapeutic dosage and thus limit systemic side effects.


2021 ◽  
Author(s):  
Fereshteh Koosha ◽  
Samira Eynali ◽  
Nazila Eyvazzadeh

Abstract Glioblastoma tumors are resistant to radiotherapy, and the need for drugs to induce radio-sensitization in tumor cells has always been a challenge. Besides, radiotherapy using targeted radionuclide is effective even for resistant tumors. Poly (ADP-ribose) polymerase (PARP) and topoisomerase I enzymes have critical roles in the repairmen of DNA damage in cells. Thus, the inhibition of the activity of these enzymes can prevent the process of DNA repair and lead to the accumulation of damaged DNA in cells, resulting in the induction of cell death in tumors. In the current study, we investigated the effect of beta-particles of iodine-131 in combination with Topotecan (TPT), as the inhibitor of topoisomerase I, and A-966492, as the inhibitor of the PARP enzyme to increase radio-sensitivity of glioblastoma cells.The U87MG cell line (a human glioblastoma cell line) were cultured in Poly-Hema-coated flasks to reach 300μm-diameter spheroids. Then, the cells were treated with non-toxic concentrations of A-966492 and TPT. The viability of the cells treated with iodine131 in combination with A-966492 and TPT was determined by the clonogenic assay. The expression level of the gamma-H2AX protein, as a biomarker of DNA double-strand breaks, was measured by the immunofluorescence staining method to examine the impact of A-966492 (1μM), TPT, and radiation on the induction cell death.The combination of A-966492 and TPT with radiation resulted in the enhanced cell death, and sensitizer enhancement ratios at 50% survival (SER50) were 1.25 and 1.45, respectively. Radio- and chemo-sensitization were promoted when iodine-131 was combined with A-966492 and TPT, with the SER50 of 1.68. Also, the expression of γ-H2AX was significantly increased in cells treated with A-966492 and TPT combined with radiation.The results demonstrated that iodine-131, in combination with A-966492 and TPT, had marked effects on radio-sensitizing and can be used as a targeted radionuclide for targeting radiotherapy in combination with PARP and topoisomerase I inhibitors to improve radiotherapy in clinics.


2001 ◽  
Vol 21 (7) ◽  
pp. 2324-2336 ◽  
Author(s):  
Alexander von Gise ◽  
Petra Lorenz ◽  
Claudia Wellbrock ◽  
Brian Hemmings ◽  
Friederike Berberich-Siebelt ◽  
...  

ABSTRACT Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.


2018 ◽  
Vol 16 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Rossella Gratton ◽  
Paola Maura Tricarico ◽  
Rafael Lima Guimaraes ◽  
Fulvio Celsi ◽  
Sergio Crovella

Background:Lopinavir and Ritonavir (LPV/r) treatment is widely used to prevent HIV mother-to-child transmission. Nevertheless, studies related to the impact of these compounds on patients, in particular in the foetus and newborns, are strictly required due to the controversial findings reported in the literature concerning possible neurologic side effects following the administration of these drugs.Objectives:In our study, we evaluated the impact of LPV/r treatment on the human glioblastoma U- 87 MG cell line.Methods:In order to evaluate the influence of Lopinavir and Ritonavir in terms of oxidative stress (ROS production), mitochondrial morphology and apoptotic cell death, the latter either in the presence or in the absence of caspase-3 and -9 inhibitors, we treated U-87 MG with increasing doses (0.1-1-10-25-50 µM) of Lopinavir and Ritonavir for 24h, either in single formulation or in combination. ROS production was measured by flow cytometry using H2DCFDA dye, mitochondrial morphology was evaluated using MitoRed dye and apoptotic cell death was monitored by flow cytometry using Annexin V-FITC and Propidium Iodide.Results:We observed that co-treatment with Lopinavir and Ritonavir (25 and 50 µM) promoted a significant increase in ROS production, caused mitochondrial network damage and induced apoptosis in a caspase-independent manner.Conclusion:Based on our findings, concordant with others reported in the literature, we hypothesize that LPV/r treatment could not be entirely free from side effects, being aware of the need of validation in in vivo models, necessary to confirm our results.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2764-2764
Author(s):  
Julius Lukes ◽  
Eliska Potuckova ◽  
Julia Starkova ◽  
Jan Stary ◽  
Jan Zuna ◽  
...  

Abstract Transient myeloproliferative disorder (TMD) is a hematopoietic disease, characterized by a clonal proliferation of immature megakaryoblasts in the neonatal period occurring in approximately 10% of newborns with Down syndrome (DS). Rarely, TMD occurs in non-DS newborns but then it is associated with somatic trisomy 21 (tri21). Tri21 together with in-utero gained mutations in the GATA1 gene encoding a myeloid transcription factor are thus considered essential in TMD. Recently, we have identified a TMD with a typical manifestation and course in a newborn without DS/somatic tri21, which admits that tri21 is dispensable for TMD development. To elucidate the alternative TMD pathogenesis, we performed comprehensive genomic/transcriptomic profiling of this TMD case. We utilized high-density SNP array and whole exome and transcriptome sequencing (WES/RNAseq) to detect copy number changes, mutations and fusion genes. We did not find any aberrations on chromosome 21 and any fusion genes. Two focal intronic losses, likely representing benign germline variants, were found on chromosome X. In addition to 6 missense mutations affecting genes without established roles in hematopoietic disorders, we found in-frame deletions in the GATA1 and JAK1 genes. Both mutations are novel. The GATA1 D65_C228del mutation is predicted to result in an internally truncated protein - GATA1aber. Unlike GATA1s (resulting from GATA1 mutations in DS-TMD) which lacks the transactivation domain (TAD) but retains both Zinc fingers (ZF), GATA1aber lacks part of TAD and the N-terminal ZF. Nevertheless, we hypothesize that GATA1aber substitutes the pathogenetic role of GATA1s. The JAK1 gene encodes a non-receptor tyrosine-kinase engaged in the JAK/STAT signaling pathway. The identified mutation results in the loss of phenylalanine 636 (F636del), which is located in the pseudokinase domain and belongs to a conserved amino acid triad (F636-F575-V658) that is believed to mediate a structural switch controlling the JAK1 catalytic activity (Toms, Nat Struct Mol Biol, 2013). JAK1 mutations are implicated in various hematological malignancies including acute megakaryocytic leukemia, and we hypothesize that JAK1 F636del co-operates with GATA1aber on TMD pathogenesis via deregulation of cytokine/growth factor signaling. We cloned the coding sequences of GATA1aber and JAK1 F636del and transfected them into a model cell line in which we confirmed the expression of both in-silico predicted proteins. Their subcellular trafficking was analogous to that of their wild type counterparts; GATA1aber was found in the nucleus and JAK1 F636del in both the nucleus and cytoplasm. Next, we assessed the kinase activity of JAK1 F636del. To distinguish auto- from trans-phosphorylation, we utilized the JAK1 F636del construct harboring an inactivating mutation of an ATP-binding site (K908G). The JAK1 F636del (but not JAK1 F636del + K908G) was autophosphorylated on Y1034/Y1035 and induced STATs phosphorylation both under steady-state conditions and following non-specific stimulation with PMA. However, at all studied time points all phosphorylation levels were lower compared to wild-type JAK1. Moreover, unlike constitutively active JAK1 V658I, JAK1 F636del did not confer IL3-independent growth to the murine B-cell progenitor cell line BAF3. Interestingly, the transforming potential of double-mutated JAK1 (JAK1 V658I + F636del) was enforced compared to JAK1 V658I. These data show that F636del does not lead to constitutive activation, but in the same time it is not functionally neutral. As the impact of F636del on JAK1 function may vary depending on upstream signaling, we are currently assessing JAK1 F636 kinase activity/transforming potential in BAF3 cells stably expressing the IL6 receptor, which (unlike the IL3 receptor) directly activates JAK1 upon ligand binding. In the future, we plan to study the impact of JAK1 F636del on GATA1s induced deregulation of erythroid/megakaryocytic lineage development and to demonstrate "GATA1s-like" function of GATA1aber. To conclude, we identified two novel mutations affecting GATA1 and JAK1 as likely drivers in an alternative tri21-independent TMD pathogenesis. As the pathogenetic role of tri21 has been poorly understood so far, we believe that by clarifying an alternative mechanism of TMD development, we could improve our understanding of this intriguing disease in general. Support: GAUK 86218 Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document